These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 38338839)
1. Orchestrating Cellular Balance: ncRNAs and RNA Interactions at the Dominant of Autophagy Regulation in Cancer. Yang X; Xiong S; Zhao X; Jin J; Yang X; Du Y; Zhao L; He Z; Gong C; Guo L; Liang T Int J Mol Sci; 2024 Jan; 25(3):. PubMed ID: 38338839 [TBL] [Abstract][Full Text] [Related]
2. Regulation of autophagy by non-coding RNAs in human glioblastoma. Molavand M; Ebrahimnezhade N; Kiani A; Yousefi B; Nazari A; Majidinia M Med Oncol; 2024 Oct; 41(11):260. PubMed ID: 39375229 [TBL] [Abstract][Full Text] [Related]
3. Role of autophagy and its regulation by noncoding RNAs in ovarian cancer. Feng C; Yuan X Exp Biol Med (Maywood); 2023 Jun; 248(12):1001-1012. PubMed ID: 36803116 [TBL] [Abstract][Full Text] [Related]
4. Non-coding RNAs associated with autophagy and their regulatory role in cancer therapeutics. Barnwal SK; Bendale H; Banerjee S Mol Biol Rep; 2022 Jul; 49(7):7025-7037. PubMed ID: 35534587 [TBL] [Abstract][Full Text] [Related]
5. Comprehensive analysis of the whole coding and non-coding RNA transcriptome expression profiles and construction of the circRNA-lncRNA co-regulated ceRNA network in laryngeal squamous cell carcinoma. Zhao R; Li FQ; Tian LL; Shang DS; Guo Y; Zhang JR; Liu M Funct Integr Genomics; 2019 Jan; 19(1):109-121. PubMed ID: 30128795 [TBL] [Abstract][Full Text] [Related]
6. Potential ceRNA networks involved in autophagy suppression of pancreatic cancer caused by chloroquine diphosphate: A study based on differentially‑expressed circRNAs, lncRNAs, miRNAs and mRNAs. Wei DM; Jiang MT; Lin P; Yang H; Dang YW; Yu Q; Liao DY; Luo DZ; Chen G Int J Oncol; 2019 Feb; 54(2):600-626. PubMed ID: 30570107 [TBL] [Abstract][Full Text] [Related]
7. Regulatory effects of noncoding RNAs on the interplay of oxidative stress and autophagy in cancer malignancy and therapy. Liu PF; Farooqi AA; Peng SY; Yu TJ; Dahms HU; Lee CH; Tang JY; Wang SC; Shu CW; Chang HW Semin Cancer Biol; 2022 Aug; 83():269-282. PubMed ID: 33127466 [TBL] [Abstract][Full Text] [Related]
8. Non-coding RNAs: the new central dogma of cancer biology. Saw PE; Xu X; Chen J; Song EW Sci China Life Sci; 2021 Jan; 64(1):22-50. PubMed ID: 32930921 [TBL] [Abstract][Full Text] [Related]
9. Non-coding RNAs and Autophagy. Yao H; Han B; Zhang Y; Shen L; Huang R Adv Exp Med Biol; 2019; 1206():199-220. PubMed ID: 31776987 [TBL] [Abstract][Full Text] [Related]
10. Whole transcriptome analysis of HCT-8 cells infected by Cryptosporidium parvum. Sun L; Li J; Xie F; Wu S; Shao T; Li X; Li J; Jian F; Zhang S; Ning C; Zhang L; Wang R Parasit Vectors; 2022 Nov; 15(1):441. PubMed ID: 36434735 [TBL] [Abstract][Full Text] [Related]
11. Noncoding RNAs as therapeutic targets in autophagy-related diabetic cardiomyopathy. Break MKB; Syed RU; Hussein W; Alqarni S; Magam SM; Nawaz M; Shaikh S; Otaibi AA; Masood N; Younes KM Pathol Res Pract; 2024 Apr; 256():155225. PubMed ID: 38442448 [TBL] [Abstract][Full Text] [Related]
12. The autophagy in ischemic stroke: A regulatory role of non-coding-RNAs. Xiaoqing S; Yinghua C; Xingxing Y Cell Signal; 2023 Apr; 104():110586. PubMed ID: 36608737 [TBL] [Abstract][Full Text] [Related]
13. Role of hedgehog signaling related non-coding RNAs in developmental and pathological conditions. HajiEsmailPoor Z; Tabnak P; Ahmadzadeh B; Ebrahimi SS; Faal B; Mashatan N Biomed Pharmacother; 2022 Sep; 153():113507. PubMed ID: 36076513 [TBL] [Abstract][Full Text] [Related]
14. Exploring the role of non-coding RNAs in autophagy. Ghafouri-Fard S; Shoorei H; Mohaqiq M; Majidpoor J; Moosavi MA; Taheri M Autophagy; 2022 May; 18(5):949-970. PubMed ID: 33525971 [TBL] [Abstract][Full Text] [Related]
15. Research Status of Differentially Expressed Noncoding RNAs in Type 2 Diabetes Patients. Shi R; Chen Y; Liao Y; Li R; Lin C; Xiu L; Yu H; Ding Y Biomed Res Int; 2020; 2020():3816056. PubMed ID: 33274206 [TBL] [Abstract][Full Text] [Related]
16. Identification of Novel Multi-Omics Expression Landscapes and Meta-Analysis of Landscape-Based Competitive Endogenous RNA Networks in ALDH+ Lung Adenocarcinoma Stem Cells. Yang W; Liang Y; Zheng Y; Luo H; Yang X; Li F Biomed Res Int; 2022; 2022():9545609. PubMed ID: 36093399 [TBL] [Abstract][Full Text] [Related]
17. The Intersection of Non-Coding RNAs Contributes to Forest Trees' Response to Abiotic Stress. Xiao D; Chen M; Yang X; Bao H; Yang Y; Wang Y Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35742808 [TBL] [Abstract][Full Text] [Related]
18. CeModule: an integrative framework for discovering regulatory patterns from genomic data in cancer. Xiao Q; Luo J; Liang C; Cai J; Li G; Cao B BMC Bioinformatics; 2019 Feb; 20(1):67. PubMed ID: 30732558 [TBL] [Abstract][Full Text] [Related]
19. Transcriptomic analysis of ncRNAs and mRNAs interactions during drought stress in switchgrass. Guan C; Li W; Wang G; Yang R; Zhang J; Zhang J; Wu B; Gao R; Jia C Plant Sci; 2024 Feb; 339():111930. PubMed ID: 38007196 [TBL] [Abstract][Full Text] [Related]
20. Noncoding RNAs in cancer and cancer stem cells. Huang T; Alvarez A; Hu B; Cheng SY Chin J Cancer; 2013 Nov; 32(11):582-93. PubMed ID: 24206916 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]