BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 38339256)

  • 1. Metabolic Signature of Warburg Effect in Cancer: An Effective and Obligatory Interplay between Nutrient Transporters and Catabolic/Anabolic Pathways to Promote Tumor Growth.
    Mathew M; Nguyen NT; Bhutia YD; Sivaprakasam S; Ganapathy V
    Cancers (Basel); 2024 Jan; 16(3):. PubMed ID: 38339256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer.
    Li C; Zhang G; Zhao L; Ma Z; Chen H
    World J Surg Oncol; 2016 Jan; 14(1):15. PubMed ID: 26791262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P; Schmidberger H; Mayer A
    Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revisiting the Warburg effect: historical dogma versus current understanding.
    Vaupel P; Multhoff G
    J Physiol; 2021 Mar; 599(6):1745-1757. PubMed ID: 33347611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactate and Lactate Transporters as Key Players in the Maintenance of the Warburg Effect.
    Pereira-Nunes A; Afonso J; Granja S; Baltazar F
    Adv Exp Med Biol; 2020; 1219():51-74. PubMed ID: 32130693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamine metabolism in breast cancer and possible therapeutic targets.
    Li S; Zeng H; Fan J; Wang F; Xu C; Li Y; Tu J; Nephew KP; Long X
    Biochem Pharmacol; 2023 Apr; 210():115464. PubMed ID: 36849062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SLC6A14 and SLC38A5 Drive the Glutaminolysis and Serine-Glycine-One-Carbon Pathways in Cancer.
    Sniegowski T; Korac K; Bhutia YD; Ganapathy V
    Pharmaceuticals (Basel); 2021 Mar; 14(3):. PubMed ID: 33806675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From Warburg effect to Reverse Warburg effect; the new horizons of anti-cancer therapy.
    Benny S; Mishra R; Manojkumar MK; Aneesh TP
    Med Hypotheses; 2020 Nov; 144():110216. PubMed ID: 33254523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correction: Mathew et al. Metabolic Signature of Warburg Effect in Cancer: An Effective and Obligatory Interplay between Nutrient Transporters and Catabolic/Anabolic Pathways to Promote Tumor Growth.
    Mathew M; Nguyen NT; Bhutia YD; Sivaprakasam S; Ganapathy V
    Cancers (Basel); 2024 Apr; 16(9):. PubMed ID: 38730740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisited Metabolic Control and Reprogramming Cancers by Means of the Warburg Effect in Tumor Cells.
    Fukushi A; Kim HD; Chang YC; Kim CH
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of Metabolic Reprogramming in Cancer Cells Supporting Enhanced Growth and Proliferation.
    Schiliro C; Firestein BL
    Cells; 2021 Apr; 10(5):. PubMed ID: 33946927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype.
    Ganapathy-Kanniappan S
    Crit Rev Biochem Mol Biol; 2018 Dec; 53(6):667-682. PubMed ID: 30668176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: connecting TGF-β signaling with "Warburg-like" cancer metabolism and L-lactate production.
    Guido C; Whitaker-Menezes D; Capparelli C; Balliet R; Lin Z; Pestell RG; Howell A; Aquila S; Andò S; Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Cell Cycle; 2012 Aug; 11(16):3019-35. PubMed ID: 22874531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic profile of the Warburg effect as a tool for molecular prognosis and diagnosis of cancer.
    Nava GM; Madrigal Perez LA
    Expert Rev Mol Diagn; 2022 Apr; 22(4):439-447. PubMed ID: 35395916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Warburg Effect: Historical Dogma Versus Current Rationale.
    Vaupel P; Multhoff G
    Adv Exp Med Biol; 2021; 1269():169-177. PubMed ID: 33966213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-scale computational study of the Warburg effect, reverse Warburg effect and glutamine addiction in solid tumors.
    Shan M; Dai D; Vudem A; Varner JD; Stroock AD
    PLoS Comput Biol; 2018 Dec; 14(12):e1006584. PubMed ID: 30532226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg Effect.
    Sun L; Suo C; Li ST; Zhang H; Gao P
    Biochim Biophys Acta Rev Cancer; 2018 Aug; 1870(1):51-66. PubMed ID: 29959989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay.
    Fiaschi T; Marini A; Giannoni E; Taddei ML; Gandellini P; De Donatis A; Lanciotti M; Serni S; Cirri P; Chiarugi P
    Cancer Res; 2012 Oct; 72(19):5130-40. PubMed ID: 22850421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect.
    San-Millán I; Brooks GA
    Carcinogenesis; 2017 Feb; 38(2):119-133. PubMed ID: 27993896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.