These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 38339459)

  • 21. Single Accelerometer to Recognize Human Activities Using Neural Networks.
    Vakacherla SS; Kantharaju P; Mevada M; Kim M
    J Biomech Eng; 2023 Jun; 145(6):. PubMed ID: 36695756
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wearable sensors based on artificial intelligence models for human activity recognition.
    Alarfaj M; Al Madini A; Alsafran A; Farag M; Chtourou S; Afifi A; Ahmad A; Al Rubayyi O; Al Harbi A; Al Thunaian M
    Front Artif Intell; 2024; 7():1424190. PubMed ID: 39015365
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complex Deep Neural Networks from Large Scale Virtual IMU Data for Effective Human Activity Recognition Using Wearables.
    Kwon H; Abowd GD; Plötz T
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960431
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Classifying Goliath Grouper (
    Brewster LR; Ibrahim AK; DeGroot BC; Ostendorf TJ; Zhuang H; Chérubin LM; Ajemian MJ
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring convolutional neural networks with transfer learning for diagnosing Lyme disease from skin lesion images.
    Hossain SI; de Goër de Herve J; Hassan MS; Martineau D; Petrosyan E; Corbin V; Beytout J; Lebert I; Durand J; Carravieri I; Brun-Jacob A; Frey-Klett P; Baux E; Cazorla C; Eldin C; Hansmann Y; Patrat-Delon S; Prazuck T; Raffetin A; Tattevin P; Vourc'h G; Lesens O; Nguifo EM
    Comput Methods Programs Biomed; 2022 Mar; 215():106624. PubMed ID: 35051835
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using a Hybrid Neural Network and a Regularized Extreme Learning Machine for Human Activity Recognition with Smartphone and Smartwatch.
    Tan TH; Shih JY; Liu SH; Alkhaleefah M; Chang YL; Gochoo M
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human Activity Recognition via Hybrid Deep Learning Based Model.
    Khan IU; Afzal S; Lee JW
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Classification of Tennis Shots with a Neural Network Approach.
    Ganser A; Hollaus B; Stabinger S
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502593
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conformer-Based Human Activity Recognition Using Inertial Measurement Units.
    Seenath S; Dharmaraj M
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687811
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Classification of runners' performance levels with concurrent prediction of biomechanical parameters using data from inertial measurement units.
    Liu Q; Mo S; Cheung VCK; Cheung BMF; Wang S; Chan PPK; Malhotra A; Cheung RTH; Chan RHM
    J Biomech; 2020 Nov; 112():110072. PubMed ID: 33075666
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Real-Time Sensor-Embedded Neural Network for Human Activity Recognition.
    Shakerian A; Douet V; Shoaraye Nejati A; Landry R
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836957
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Human activity recognition based on the inertial information and convolutional neural network].
    Li X; Liu X; Li Y; Cao H; Chen Y; Lin Y; Huang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Aug; 37(4):596-601. PubMed ID: 32840075
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ConTraNet: A hybrid network for improving the classification of EEG and EMG signals with limited training data.
    Ali O; Saif-Ur-Rehman M; Glasmachers T; Iossifidis I; Klaes C
    Comput Biol Med; 2024 Jan; 168():107649. PubMed ID: 37980798
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Human activity recognition using tools of convolutional neural networks: A state of the art review, data sets, challenges, and future prospects.
    Islam MM; Nooruddin S; Karray F; Muhammad G
    Comput Biol Med; 2022 Oct; 149():106060. PubMed ID: 36084382
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inertial-Measurement-Unit-Based Novel Human Activity Recognition Algorithm Using Conformer.
    Kim YW; Cho WH; Kim KS; Lee S
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632341
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human Activity Recognition: Review, Taxonomy and Open Challenges.
    Arshad MH; Bilal M; Gani A
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080922
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wearable IMU-Based Human Activity Recognition Algorithm for Clinical Balance Assessment Using 1D-CNN and GRU Ensemble Model.
    Kim YW; Joa KL; Jeong HY; Lee S
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833704
    [TBL] [Abstract][Full Text] [Related]  

  • 38. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 39. White blood cells detection and classification based on regional convolutional neural networks.
    Kutlu H; Avci E; Özyurt F
    Med Hypotheses; 2020 Feb; 135():109472. PubMed ID: 31760248
    [TBL] [Abstract][Full Text] [Related]  

  • 40. AUTO-HAR: An adaptive human activity recognition framework using an automated CNN architecture design.
    Ismail WN; Alsalamah HA; Hassan MM; Mohamed E
    Heliyon; 2023 Feb; 9(2):e13636. PubMed ID: 36852018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.