These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38339517)

  • 1. Trend Decomposition for Temperature Compensation in a Radar-Based Structural Health Monitoring System of Wind Turbine Blades.
    Simon J; Moll J; Krozer V
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic-Signal-Based Damage Detection of Wind Turbine Blades-A Review.
    Ding S; Yang C; Zhang S
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical and Experimental Analysis of Horizontal-Axis Wind Turbine Blade Fatigue Life.
    Shah I; Khan A; Ali M; Shahab S; Aziz S; Noon MAA; Tipu JAK
    Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. π-FBG Fiber Optic Acoustic Emission Sensor for the Crack Detection of Wind Turbine Blades.
    Yan Q; Che X; Li S; Wang G; Liu X
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Damage Detection for Rotating Blades Using Digital Image Correlation with an AC-SURF Matching Algorithm.
    Gu J; Liu G; Li M
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Root Causes and Mechanisms of Failure of Wind Turbine Blades: Overview.
    Mishnaevsky L
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibration-based monitoring of a small-scale wind turbine blade under varying climate conditions. Part I: An experimental benchmark.
    Ou Y; Tatsis KE; Dertimanis VK; Spiridonakos MD; Chatzi EN
    Struct Control Health Monit; 2021 Jun; 28(6):e2660. PubMed ID: 35865081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PSO-BP Neural Network-Based Strain Prediction of Wind Turbine Blades.
    Liu X; Liu Z; Liang Z; Zhu SP; Correia JAFO; De Jesus AMP
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31212753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wind turbine clutter mitigation in coastal UHF radar.
    Yang J; Pan C; Wang C; Jiang D; Wen B
    ScientificWorldJournal; 2014; 2014():529230. PubMed ID: 24550709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovering high-quality glass fibers from end-of-life wind turbine blades through swelling-assisted low-temperature pyrolysis.
    Xu M; Yang J; Ji H; Wu Y; Li J; Di J; Meng X; Jiang H; Lu Q
    Waste Manag; 2024 Oct; 187():179-187. PubMed ID: 39038429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-Depth Study on the Application of a Graphene Platelet-reinforced Composite to Wind Turbine Blades.
    Kim HJ; Cho JR
    Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Testing by Torsion of Scalable Wind Turbine Blades.
    Morăraș CI; Goanță V; Istrate B; Munteanu C; Dobrescu GS
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36235885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moving Accelerometers to the Tip: Monitoring of Wind Turbine Blade Bending Using 3D Accelerometers and Model-Based Bending Shapes.
    Loss T; Bergmann A
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32957685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Pattern Recognition Approach to Acoustic Emission Data Originating from Fatigue of Wind Turbine Blades.
    Tang J; Soua S; Mares C; Gan TH
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29104245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiobjective Optimization of Composite Wind Turbine Blade.
    Jureczko M; Mrówka M
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural Frequency Transmissibility for Detection of Cracks in Horizontal Axis Wind Turbine Blades.
    Henderson R; Azhari F; Sinclair A
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39065855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Damage Detection Based on Static Strain Responses Using FBG in a Wind Turbine Blade.
    Tian S; Yang Z; Chen X; Xie Y
    Sensors (Basel); 2015 Aug; 15(8):19992-20005. PubMed ID: 26287200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the Effect of Fiber Orientation on Mechanical and Elastic Characteristics at Axial Stresses of GFRP Used in Wind Turbine Blades.
    Morăraș CI; Goanță V; Husaru D; Istrate B; Bârsănescu PD; Munteanu C
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting and mitigating wind turbine clutter for airspace radar systems.
    Wang WQ
    ScientificWorldJournal; 2013; 2013():385182. PubMed ID: 24385880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delamination Fracture Behavior of Unidirectional Carbon Reinforced Composites Applied to Wind Turbine Blades.
    Boyano A; Lopez-Guede JM; Torre-Tojal L; Fernandez-Gamiz U; Zulueta E; Mujika F
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33513957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.