These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 38339561)
1. A Deep Learning Approach to Lunar Rover Global Path Planning Using Environmental Constraints and the Rover Internal Resource Status. Tanaka T; Malki H Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339561 [TBL] [Abstract][Full Text] [Related]
2. Learning-Based End-to-End Path Planning for Lunar Rovers with Safety Constraints. Yu X; Wang P; Zhang Z Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33504073 [TBL] [Abstract][Full Text] [Related]
3. Autonomous Lunar Rover Localization while Fully Scanning a Bounded Obstacle-Rich Workspace. Kim J Sensors (Basel); 2024 Oct; 24(19):. PubMed ID: 39409440 [TBL] [Abstract][Full Text] [Related]
4. Investigating the Impact of Lunar Rover Structure and Lunar Surface Characteristics on Antenna Performance. Gadhafi R; Serria E; AlMaeeni S; Mukhtar H; Abd-Alhameed R; Mansoor W Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205055 [TBL] [Abstract][Full Text] [Related]
5. Value Iteration Networks with Double Estimator for Planetary Rover Path Planning. Jin X; Lan W; Wang T; Yu P Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960508 [TBL] [Abstract][Full Text] [Related]
7. Modeling and Analysis of a Reconfigurable Rover for Improved Traversing over Soft Sloped Terrains. Lyu S; Zhang W; Yao C; Zhu Z; Jia Z Biomimetics (Basel); 2023 Mar; 8(1):. PubMed ID: 36975361 [TBL] [Abstract][Full Text] [Related]
8. Ancient Siliciclastic-Evaporites as Seen by Remote Sensing Instrumentation with Implications for the Rover-Scale Exploration of Sedimentary Environments on Mars. Meyer MJ; Milliken RE; Hurowitz JE; Robertson KM Astrobiology; 2023 May; 23(5):477-495. PubMed ID: 36944138 [TBL] [Abstract][Full Text] [Related]
9. Modeling of slip rate-dependent traversability for path planning of wheeled mobile robot in sandy terrain. Sakayori G; Ishigami G Front Robot AI; 2024; 11():1320261. PubMed ID: 38332951 [TBL] [Abstract][Full Text] [Related]
10. Computationally efficient and sub-optimal trajectory planning framework based on trajectory-quality growth rate analysis. Takemura R; Ishigami G Front Robot AI; 2022; 9():994437. PubMed ID: 36388252 [TBL] [Abstract][Full Text] [Related]
11. Semantic Terrain Segmentation in the Navigation Vision of Planetary Rovers-A Systematic Literature Review. Kuang B; Gu C; Rana ZA; Zhao Y; Sun S; Nnabuife SG Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366089 [No Abstract] [Full Text] [Related]
12. Slip-Based Autonomous ZUPT through Gaussian Process to Improve Planetary Rover Localization. Kilic C; Ohi N; Gu Y; Gross JN IEEE Robot Autom Lett; 2021 Jul; 6(3):4782-4789. PubMed ID: 33969183 [TBL] [Abstract][Full Text] [Related]
13. The Mars 2020 Bell JF; Maki JN; Mehall GL; Ravine MA; Caplinger MA; Bailey ZJ; Brylow S; Schaffner JA; Kinch KM; Madsen MB; Winhold A; Hayes AG; Corlies P; Tate C; Barrington M; Cisneros E; Jensen E; Paris K; Crawford K; Rojas C; Mehall L; Joseph J; Proton JB; Cluff N; Deen RG; Betts B; Cloutis E; Coates AJ; Colaprete A; Edgett KS; Ehlmann BL; Fagents S; Grotzinger JP; Hardgrove C; Herkenhoff KE; Horgan B; Jaumann R; Johnson JR; Lemmon M; Paar G; Caballo-Perucha M; Gupta S; Traxler C; Preusker F; Rice MS; Robinson MS; Schmitz N; Sullivan R; Wolff MJ Space Sci Rev; 2021; 217(1):24. PubMed ID: 33612866 [TBL] [Abstract][Full Text] [Related]
14. VOILA on the LUVMI-X Rover: Laser-Induced Breakdown Spectroscopy for the Detection of Volatiles at the Lunar South Pole. Vogt DS; Schröder S; Richter L; Deiml M; Weßels P; Neumann J; Hübers HW Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502218 [TBL] [Abstract][Full Text] [Related]
15. Hierarchical Area-Based and Path-Based Heuristic Approaches for Multirobot Coverage Path Planning with Performance Analysis in Surveillance Systems. Gong J; Lee S Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896626 [TBL] [Abstract][Full Text] [Related]
16. Computer-Aided Exploration of the Martian Geology. Rongier G; Pankratius V Earth Space Sci; 2018 Aug; 5(8):393-407. PubMed ID: 31032384 [TBL] [Abstract][Full Text] [Related]
17. Research on the Improvement of Semi-Global Matching Algorithm for Binocular Vision Based on Lunar Surface Environment. Guo YQ; Gu M; Xu ZD Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571684 [TBL] [Abstract][Full Text] [Related]
18. Volcanic history of the Imbrium basin: A close-up view from the lunar rover Yutu. Zhang J; Yang W; Hu S; Lin Y; Fang G; Li C; Peng W; Zhu S; He Z; Zhou B; Lin H; Yang J; Liu E; Xu Y; Wang J; Yao Z; Zou Y; Yan J; Ouyang Z Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5342-7. PubMed ID: 25870265 [TBL] [Abstract][Full Text] [Related]
19. A Path-Planning Method Based on Improved Soft Actor-Critic Algorithm for Mobile Robots. Zhao T; Wang M; Zhao Q; Zheng X; Gao H Biomimetics (Basel); 2023 Oct; 8(6):. PubMed ID: 37887612 [TBL] [Abstract][Full Text] [Related]
20. A Hierarchical Path Planning Approach with Multi-SARSA Based on Topological Map. Wen S; Jiang Y; Cui B; Gao K; Wang F Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]