These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 38339561)
21. Biologically Inspired Complete Coverage Path Planning Algorithm Based on Q-Learning. Tan X; Han L; Gong H; Wu Q Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430561 [TBL] [Abstract][Full Text] [Related]
22. ROVER variant caller: read-pair overlap considerate variant-calling software applied to PCR-based massively parallel sequencing datasets. Pope BJ; Nguyen-Dumont T; Hammet F; Park DJ Source Code Biol Med; 2014 Jan; 9(1):3. PubMed ID: 24461215 [TBL] [Abstract][Full Text] [Related]
23. A 2-year locomotive exploration and scientific investigation of the lunar farside by the Yutu-2 rover. Ding L; Zhou R; Yuan Y; Yang H; Li J; Yu T; Liu C; Wang J; Li S; Gao H; Deng Z; Li N; Wang Z; Gong Z; Liu G; Xie J; Wang S; Rong Z; Deng D; Wang X; Han S; Wan W; Richter L; Huang L; Gou S; Liu Z; Yu H; Jia Y; Chen B; Dang Z; Zhang K; Li L; He X; Liu S; Di K Sci Robot; 2022 Jan; 7(62):eabj6660. PubMed ID: 35044796 [TBL] [Abstract][Full Text] [Related]
24. Visual SLAM-Based Robotic Mapping Method for Planetary Construction. Hong S; Bangunharcana A; Park JM; Choi M; Shin HS Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833786 [TBL] [Abstract][Full Text] [Related]
25. SPIN-Based Linear Temporal Logic Path Planning for Ground Vehicle Missions with Motion Constraints on Digital Elevation Models. Toscano-Moreno M; Mandow A; Martínez MA; García-Cerezo AJ Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204861 [TBL] [Abstract][Full Text] [Related]
26. Cooperative Dynamic Motion Planning for Dual Manipulator Arms Based on RRT*Smart-AD Algorithm. Long H; Li G; Zhou F; Chen T Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765821 [TBL] [Abstract][Full Text] [Related]
27. A Mapless Local Path Planning Approach Using Deep Reinforcement Learning Framework. Yin Y; Chen Z; Liu G; Guo J Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850635 [TBL] [Abstract][Full Text] [Related]
28. BISMARC: a biologically inspired system for map-based autonomous rover control. Huntsberger T; Rose J Neural Netw; 1998 Oct; 11(7-8):1497-1510. PubMed ID: 12662764 [TBL] [Abstract][Full Text] [Related]
29. First look by the Yutu-2 rover at the deep subsurface structure at the lunar farside. Lai J; Xu Y; Bugiolacchi R; Meng X; Xiao L; Xie M; Liu B; Di K; Zhang X; Zhou B; Shen S; Xu L Nat Commun; 2020 Jul; 11(1):3426. PubMed ID: 32647265 [TBL] [Abstract][Full Text] [Related]
30. 3D Global Path Planning Optimization for Cellular-Connected UAVs under Link Reliability Constraint. Behjati M; Nordin R; Zulkifley MA; Abdullah NF Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433554 [TBL] [Abstract][Full Text] [Related]
31. Autonomous Navigation of a Center-Articulated and Hydrostatic Transmission Rover using a Modified Pure Pursuit Algorithm in a Cotton Field. Fue K; Porter W; Barnes E; Li C; Rains G Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32784690 [TBL] [Abstract][Full Text] [Related]
32. Training augmentation using additive sensory noise in a lunar rover navigation task. Sherman SO; Jonsen A; Lewis Q; Schlittenhart M; Szafir D; Clark TK; Anderson AP Front Neurosci; 2023; 17():1180314. PubMed ID: 37424995 [TBL] [Abstract][Full Text] [Related]
33. AUV Path Planning Considering Ocean Current Disturbance Based on Cloud Desktop Technology. Hu S; Xiao S; Yang J; Zhang Z; Zhang K; Zhu Y; Zhang Y Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687967 [TBL] [Abstract][Full Text] [Related]
34. An Autonomous Path Planning Model for Unmanned Ships Based on Deep Reinforcement Learning. Guo S; Zhang X; Zheng Y; Du AY Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31940855 [TBL] [Abstract][Full Text] [Related]
35. Comprehensive mapping of lunar surface chemistry by adding Chang'e-5 samples with deep learning. Yang C; Zhang X; Bruzzone L; Liu B; Liu D; Ren X; Benediktsson JA; Liang Y; Yang B; Yin M; Zhao H; Guan R; Li C; Ouyang Z Nat Commun; 2023 Nov; 14(1):7554. PubMed ID: 37985761 [TBL] [Abstract][Full Text] [Related]
36. Improved Robot Path Planning Method Based on Deep Reinforcement Learning. Han H; Wang J; Kuang L; Han X; Xue H Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420785 [TBL] [Abstract][Full Text] [Related]
37. UNDR ROVER - a fast and accurate variant caller for targeted DNA sequencing. Park DJ; Li R; Lau E; Georgeson P; Nguyen-Dumont T; Pope BJ BMC Bioinformatics; 2016 Apr; 17():165. PubMed ID: 27083325 [TBL] [Abstract][Full Text] [Related]
38. Bidirectional Jump Point Search Path-Planning Algorithm Based on Electricity-Guided Navigation Behavior of Electric Eels and Map Preprocessing. Gong H; Tan X; Wu Q; Li J; Chu Y; Jiang A; Han H; Zhang K Biomimetics (Basel); 2023 Aug; 8(5):. PubMed ID: 37754138 [TBL] [Abstract][Full Text] [Related]
39. Multi-UAV simultaneous target assignment and path planning based on deep reinforcement learning in dynamic multiple obstacles environments. Kong X; Zhou Y; Li Z; Wang S Front Neurorobot; 2023; 17():1302898. PubMed ID: 38318422 [TBL] [Abstract][Full Text] [Related]
40. Path Planning for Multi-Arm Manipulators Using Deep Reinforcement Learning: Soft Actor-Critic with Hindsight Experience Replay. Prianto E; Kim M; Park JH; Bae JH; Kim JS Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33086774 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]