These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38339637)

  • 21. Simultaneous sEMG Recognition of Gestures and Force Levels for Interaction With Prosthetic Hand.
    Fang B; Wang C; Sun F; Chen Z; Shan J; Liu H; Ding W; Liang W
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2426-2436. PubMed ID: 35981072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pattern recognition control of multifunction myoelectric prostheses by patients with congenital transradial limb defects: a preliminary study.
    Kryger M; Schultz AE; Kuiken T
    Prosthet Orthot Int; 2011 Dec; 35(4):395-401. PubMed ID: 21960053
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduced Daily Recalibration of Myoelectric Prosthesis Classifiers Based on Domain Adaptation.
    Liu J; Sheng X; Zhang D; He J; Zhu X
    IEEE J Biomed Health Inform; 2016 Jan; 20(1):166-76. PubMed ID: 25532196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electromyographic classification of effort in muscle strength assessment.
    Veer K; Sharma T
    Biomed Tech (Berl); 2018 Mar; 63(2):131-137. PubMed ID: 28076293
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Motion recognition for simultaneous control of multifunctional transradial prostheses.
    Jiang N; Tian L; Fang P; Dai Y; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1603-6. PubMed ID: 24110009
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards reducing the impacts of unwanted movements on identification of motion intentions.
    Li X; Chen S; Zhang H; Samuel OW; Wang H; Fang P; Zhang X; Li G
    J Electromyogr Kinesiol; 2016 Jun; 28():90-8. PubMed ID: 27093136
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Repeatability of grasp recognition for robotic hand prosthesis control based on sEMG data.
    Palermo F; Cognolato M; Gijsberts A; Muller H; Caputo B; Atzori M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1154-1159. PubMed ID: 28813977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transradial Amputee Gesture Classification Using an Optimal Number of sEMG Sensors: An Approach Using ICA Clustering.
    Naik GR; Al-Timemy AH; Nguyen HT
    IEEE Trans Neural Syst Rehabil Eng; 2016 Aug; 24(8):837-46. PubMed ID: 26394431
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Systematic Study on Electromyography-Based Hand Gesture Recognition for Assistive Robots Using Deep Learning and Machine Learning Models.
    Gopal P; Gesta A; Mohebbi A
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632058
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Open Database for Accurate Upper-Limb Intent Detection Using Electromyography and Reliable Extreme Learning Machines.
    Cene VH; Tosin M; Machado J; Balbinot A
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31003524
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatio-Temporal Inertial Measurements Feature Extraction Improves Hand Movement Pattern Recognition without Electromyography.
    Khushaba RN; Krasoulis A; Al-Jumaily A; Nazarpour K
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2108-2111. PubMed ID: 30440819
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements.
    Young AJ; Smith LH; Rouse EJ; Hargrove LJ
    J Neuroeng Rehabil; 2014 Jan; 11():5. PubMed ID: 24410948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control.
    Daley H; Englehart K; Hargrove L; Kuruganti U
    J Electromyogr Kinesiol; 2012 Jun; 22(3):478-84. PubMed ID: 22269773
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cascaded Adaptation Framework for Fast Calibration of Myoelectric Control.
    Zhu X; Liu J; Zhang D; Sheng X; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):254-264. PubMed ID: 27164595
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Myoelectric Pattern Recognition Outperforms Direct Control for Transhumeral Amputees with Targeted Muscle Reinnervation: A Randomized Clinical Trial.
    Hargrove LJ; Miller LA; Turner K; Kuiken TA
    Sci Rep; 2017 Oct; 7(1):13840. PubMed ID: 29062019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NLR, MLP, SVM, and LDA: a comparative analysis on EMG data from people with trans-radial amputation.
    Dellacasa Bellingegni A; Gruppioni E; Colazzo G; Davalli A; Sacchetti R; Guglielmelli E; Zollo L
    J Neuroeng Rehabil; 2017 Aug; 14(1):82. PubMed ID: 28807038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Multi-Class Proportional Myocontrol Algorithm for Upper Limb Prosthesis Control: Validation in Real-Life Scenarios on Amputees.
    Amsuess S; Goebel P; Graimann B; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):827-36. PubMed ID: 25296406
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis.
    Su BY; Wang J; Liu SQ; Sheng M; Jiang J; Xiang K
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1032-1042. PubMed ID: 30969928
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved hand prostheses control for transradial amputees based on hybrid of voice recognition and electromyography.
    Alkhafaf OS; Wali MK; Al-Timemy AH
    Int J Artif Organs; 2021 Jul; 44(7):509-517. PubMed ID: 33287634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.