These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38339649)

  • 1. J-Net: Improved U-Net for Terahertz Image Super-Resolution.
    Yeo WH; Jung SH; Oh SJ; Maeng I; Lee ES; Ryu HC
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient sub-pixel convolutional neural network for terahertz image super-resolution.
    Ruan H; Tan Z; Chen L; Wan W; Cao J
    Opt Lett; 2022 Jun; 47(12):3115-3118. PubMed ID: 35709064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terahertz image super-resolution based on a deep convolutional neural network.
    Long Z; Wang T; You C; Yang Z; Wang K; Liu J
    Appl Opt; 2019 Apr; 58(10):2731-2735. PubMed ID: 31045074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual U-Net residual networks for cardiac magnetic resonance images super-resolution.
    Qiu D; Cheng Y; Wang X
    Comput Methods Programs Biomed; 2022 May; 218():106707. PubMed ID: 35255374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terahertz image super-resolution based on a complex convolutional neural network.
    Wang Y; Qi F; Wang J
    Opt Lett; 2021 Jul; 46(13):3123-3126. PubMed ID: 34197396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive terahertz image super-resolution with adjustable convolutional neural network.
    Li Y; Hu W; Zhang X; Xu Z; Ni J; Ligthart LP
    Opt Express; 2020 Jul; 28(15):22200-22217. PubMed ID: 32752486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small training dataset convolutional neural networks for application-specific super-resolution microscopy.
    Mannam V; Howard S
    J Biomed Opt; 2023 Mar; 28(3):036501. PubMed ID: 36925620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex "zero-shot" super-resolution reconstruction algorithm for THz imaging.
    Wang Y; Qi F; Wang J
    Appl Opt; 2022 Jul; 61(20):5831-5837. PubMed ID: 36255819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Lightweight Low-dose PET Image Super-resolution Reconstruction Method based on Convolutional Neural Network.
    Liu K; Yu H; Zhang M; Zhao L; Wang X; Liu S; Li H; Yang K
    Curr Med Imaging; 2023; 19(12):1427-1435. PubMed ID: 36757033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid convolutional neural network for super-resolution reconstruction of MR images.
    Zheng Y; Zhen B; Chen A; Qi F; Hao X; Qiu B
    Med Phys; 2020 Jul; 47(7):3013-3022. PubMed ID: 32201956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Super-Resolution Reconstruction of Terahertz Images Based on Residual Generative Adversarial Network with Enhanced Attention.
    Hou Z; Cha X; An H; Zhang A; Lai D
    Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A terahertz time-domain super-resolution imaging method using a local-pixel graph neural network for biological products.
    Lei T; Tobin B; Liu Z; Yang SY; Sun DW
    Anal Chim Acta; 2021 Oct; 1181():338898. PubMed ID: 34556238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Super-resolution reconstruction for terahertz imaging based on sub-pixel gradient field transform.
    Guo Y; Ling F; Li H; Zhou S; Ji J; Yao J
    Appl Opt; 2019 Aug; 58(23):6244-6250. PubMed ID: 31503766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional self super-resolution for pelvic floor MRI using a convolutional neural network with multi-orientation data training.
    Feng F; Ashton-Miller JA; DeLancey JOL; Luo J
    Med Phys; 2022 Feb; 49(2):1083-1096. PubMed ID: 34967014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full-count PET recovery from low-count image using a dilated convolutional neural network.
    Spuhler K; Serrano-Sosa M; Cattell R; DeLorenzo C; Huang C
    Med Phys; 2020 Oct; 47(10):4928-4938. PubMed ID: 32687608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive compressed sensing algorithm for terahertz spectral image reconstruction based on residual learning.
    Jiang Y; Li G; Ge H; Wang F; Li L; Chen X; Lv M; Zhang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 281():121586. PubMed ID: 35853252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single Image Super-Resolution Using Global Regression Based on Multiple Local Linear Mappings.
    Choi JS; Kim M
    IEEE Trans Image Process; 2017 Mar; 26(3):1300-1314. PubMed ID: 28092557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a mechanism for reconstruction of terahertz single-frequency images of biological samples.
    Tang X; Zhou S; Zhu S; Pu J; Zheng Q; Ma L
    Appl Opt; 2022 Dec; 61(35):10345-10351. PubMed ID: 36607092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unsupervised arterial spin labeling image superresolution via multiscale generative adversarial network.
    Cui J; Gong K; Han P; Liu H; Li Q
    Med Phys; 2022 Apr; 49(4):2373-2385. PubMed ID: 35048390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Detection of Defects in Multi-Layer Lightweight Composite Structures Using THz-TDS Based on a U-Net-BiLSTM Network.
    Zhang D; Li L; Zhang J; Ren J; Gu J; Li L; Jiang B; Zhang S
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.