These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38339649)

  • 21. SGSR: style-subnets-assisted generative latent bank for large-factor super-resolution with registered medical image dataset.
    Zheng T; Oda H; Hayashi Y; Nakamura S; Mori M; Takabatake H; Natori H; Oda M; Mori K
    Int J Comput Assist Radiol Surg; 2024 Mar; 19(3):493-506. PubMed ID: 38129364
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unsupervised arterial spin labeling image superresolution via multiscale generative adversarial network.
    Cui J; Gong K; Han P; Liu H; Li Q
    Med Phys; 2022 Apr; 49(4):2373-2385. PubMed ID: 35048390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel hybrid generative adversarial network for CT and MRI super-resolution reconstruction.
    Xiao Y; Chen C; Wang L; Yu J; Fu X; Zou Y; Lin Z; Wang K
    Phys Med Biol; 2023 Jun; 68(13):. PubMed ID: 37285848
    [No Abstract]   [Full Text] [Related]  

  • 24. Defect Detection of Composite Material Terahertz Image Based on Faster Region-Convolutional Neural Networks.
    Yang X; Liu P; Wang S; Wu B; Zhang K; Yang B; Wu X
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Event-Guided Image Super-Resolution Reconstruction.
    Guo G; Feng Y; Lv H; Zhao Y; Liu H; Bi G
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850751
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MRI super-resolution via realistic downsampling with adversarial learning.
    Huang B; Xiao H; Liu W; Zhang Y; Wu H; Wang W; Yang Y; Yang Y; Miller GW; Li T; Cai J
    Phys Med Biol; 2021 Oct; 66(20):. PubMed ID: 34474407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Texture transformer super-resolution for low-dose computed tomography.
    Zhou S; Yu L; Jin M
    Biomed Phys Eng Express; 2022 Nov; 8(6):. PubMed ID: 36301699
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A 3D Convolutional Neural Network with Gradient Guidance for Image Super-Resolution of Late Gadolinium Enhanced Cardiac MRI.
    Upendra RR; Linte CA
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1707-1710. PubMed ID: 36086376
    [TBL] [Abstract][Full Text] [Related]  

  • 29. End-to-end memory-efficient reconstruction for cone beam CT.
    Moriakov N; Sonke JJ; Teuwen J
    Med Phys; 2023 Dec; 50(12):7579-7593. PubMed ID: 37846969
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Generative Adversarial Network technique for high-quality super-resolution reconstruction of cardiac magnetic resonance images.
    Zhao M; Wei Y; Wong KKL
    Magn Reson Imaging; 2022 Jan; 85():153-160. PubMed ID: 34699953
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Super-resolution terahertz synthetic aperture image reconstruction algorithm.
    Wang N; Qi F
    Appl Opt; 2024 Jan; 63(1):186-192. PubMed ID: 38175020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of color augmentation and tissue type in deep learning for hematoxylin and eosin image super resolution.
    Manuel C; Zehnder P; Kaya S; Sullivan R; Hu F
    J Pathol Inform; 2022; 13():100148. PubMed ID: 36268062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid whole-heart CMR with single volume super-resolution.
    Steeden JA; Quail M; Gotschy A; Mortensen KH; Hauptmann A; Arridge S; Jones R; Muthurangu V
    J Cardiovasc Magn Reson; 2020 Aug; 22(1):56. PubMed ID: 32753047
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving the brain image resolution of generalized q-sampling MRI revealed by a three-dimensional CNN-based method.
    Shin CY; Chao YP; Kuo LW; Chang YE; Weng JC
    Front Neuroinform; 2023; 17():956600. PubMed ID: 36873565
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fast single image super-resolution using estimated low-frequency k-space data in MRI.
    Luo J; Mou Z; Qin B; Li W; Yang F; Robini M; Zhu Y
    Magn Reson Imaging; 2017 Jul; 40():1-11. PubMed ID: 28366758
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tunable Terahertz Deep Subwavelength Imaging Based on a Graphene Monolayer.
    Tang HH; Huang TJ; Liu JY; Tan Y; Liu PK
    Sci Rep; 2017 Apr; 7():46283. PubMed ID: 28397815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Mitigating metal artifacts from cobalt-chromium alloy crowns in cone-beam CT images through deep learning techniques].
    Jia LH; Lin HL; Zheng SW; Lin XJ; Zhang D; Yu H
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2024 Jan; 59(1):71-79. PubMed ID: 38228542
    [No Abstract]   [Full Text] [Related]  

  • 38. Deep learning-based convolutional neural network for intramodality brain MRI synthesis.
    Osman AFI; Tamam NM
    J Appl Clin Med Phys; 2022 Apr; 23(4):e13530. PubMed ID: 35044073
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Study of Terahertz Amplitude Imaging Based on the Mean Absorption].
    Zhang ZY; Ji T; Xiao TQ; Zhao HW; Chen M; Yu XH; Tong YJ; Zhu HC; Peng WW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Dec; 35(12):3315-8. PubMed ID: 26964201
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Arbitrary Scale Super-Resolution Approach for 3D MR Images via Implicit Neural Representation.
    Wu Q; Li Y; Sun Y; Zhou Y; Wei H; Yu J; Zhang Y
    IEEE J Biomed Health Inform; 2023 Feb; 27(2):1004-1015. PubMed ID: 37022393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.