These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38339650)

  • 61. Evaluation of magnetic nanoparticle samples made from biocompatible ferucarbotran by time-correlation magnetic particle imaging reconstruction method.
    Ishihara Y; Honma T; Nohara S; Ito Y
    BMC Med Imaging; 2013 Jun; 13():15. PubMed ID: 23734917
    [TBL] [Abstract][Full Text] [Related]  

  • 62. On magnetic dipole-dipole interactions of nanoparticles in magnetic particle imaging.
    Them K
    Phys Med Biol; 2017 Jun; 62(14):5623-5639. PubMed ID: 28467324
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Design of a magnetic field generator for experiments on magnetic effects in cell cultures.
    Kinouchi Y; Ushita T; Sato K; Miyamoto H; Yamaguchi H; Yoshida Y
    Bioelectromagnetics; 1984; 5(4):399-410. PubMed ID: 6517959
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Tracer design for magnetic particle imaging (invited).
    Ferguson RM; Khandhar AP; Krishnan KM
    J Appl Phys; 2012 Apr; 111(7):7B318-7B3185. PubMed ID: 22434939
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Safety measurements for heating of instruments for cardiovascular interventions in magnetic particle imaging (MPI) - first experiences.
    Duschka RL; Wojtczyk H; Panagiotopoulos N; Haegele J; Bringout G; Buzug TM; Barkhausen J; Vogt FM
    J Healthc Eng; 2014; 5(1):79-93. PubMed ID: 24691388
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Near real-time magnetic particle imaging for visual assessment of vascular stenosis in a phantom model.
    Dietrich P; Vogel P; Kampf T; Rückert MA; Behr VC; Bley TA; Herz S
    Phys Med; 2021 Jan; 81():210-214. PubMed ID: 33477058
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Understanding the dynamics of superparamagnetic particles under the influence of high field gradient arrays.
    Barnsley LC; Carugo D; Aron M; Stride E
    Phys Med Biol; 2017 Mar; 62(6):2333-2360. PubMed ID: 28141578
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Highly Stable Amine Functionalized Iron Oxide Nanoparticles Designed for Magnetic Particle Imaging (MPI).
    Arami H; Krishnan KM
    IEEE Trans Magn; 2013 Jul; 49(7):3500-3503. PubMed ID: 25554710
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Moving table magnetic particle imaging: a stepwise approach preserving high spatio-temporal resolution.
    Szwargulski P; Gdaniec N; Graeser M; Möddel M; Griese F; Krishnan KM; Buzug TM; Knopp T
    J Med Imaging (Bellingham); 2018 Oct; 5(4):046002. PubMed ID: 30525063
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Magnetic Particle Imaging for Quantification of Vascular Stenoses: A Phantom Study.
    Herz S; Vogel P; Kampf T; Ruckert MA; Veldhoen S; Behr VC; Bley TA
    IEEE Trans Med Imaging; 2018 Jan; 37(1):61-67. PubMed ID: 28644801
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A truncated twisted solenoid RF phase gradient transmit coil for TRASE MRI.
    Sedlock CJ; Purchase AR; Tomanek B; Sharp JC
    J Magn Reson; 2023 Feb; 347():107361. PubMed ID: 36599255
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Calibration-Free Relaxation-Based Multi-Color Magnetic Particle Imaging.
    Muslu Y; Utkur M; Demirel OB; Saritas EU
    IEEE Trans Med Imaging; 2018 Aug; 37(8):1920-1931. PubMed ID: 29993774
    [TBL] [Abstract][Full Text] [Related]  

  • 73. High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI).
    Bauer LM; Situ SF; Griswold MA; Samia AC
    Nanoscale; 2016 Jun; 8(24):12162-9. PubMed ID: 27210742
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Implementation of the surface gradiometer receive coils for the improved detection limit and sensitivity in the single-sided MPI scanner.
    McDonough C; Pagan J; Tonyushkin A
    Phys Med Biol; 2022 Dec; 67(24):. PubMed ID: 36541550
    [No Abstract]   [Full Text] [Related]  

  • 75. High homogeneity permanent magnet for diamond magnetometry.
    Wickenbrock A; Zheng H; Chatzidrosos G; Shaji Rebeirro J; Schneemann T; Blümler P
    J Magn Reson; 2021 Jan; 322():106867. PubMed ID: 33423759
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Frequency Mixing Magnetic Detection Setup Employing Permanent Ring Magnets as a Static Offset Field Source.
    Pourshahidi AM; Achtsnicht S; Offenhäusser A; Krause HJ
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433383
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Magnetic particle imaging for assessment of cerebral perfusion and ischemia.
    Ludewig P; Graeser M; Forkert ND; Thieben F; Rández-Garbayo J; Rieckhoff J; Lessmann K; Förger F; Szwargulski P; Magnus T; Knopp T
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2022 Jan; 14(1):e1757. PubMed ID: 34617413
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Halbach Effect at the Nanoscale from Chiral Spin Textures.
    Marioni MA; Penedo M; Baćani M; Schwenk J; Hug HJ
    Nano Lett; 2018 Apr; 18(4):2263-2267. PubMed ID: 29543463
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The Reconstruction of Magnetic Particle Imaging: Current Approaches Based on the System Matrix.
    Chen X; Jiang Z; Han X; Wang X; Tang X
    Diagnostics (Basel); 2021 Apr; 11(5):. PubMed ID: 33925830
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Pulse inversion sequences for mechanically scanned transducers.
    Frijlink ME; Goertz DE; de Jong N; van der Steen AF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2154-63. PubMed ID: 18986864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.