These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 38339729)
1. An Optical Signal Simulator for the Characterization of Photoplethysmographic Devices. Pittella E; Testa O; Podestà L; Piuzzi E Sensors (Basel); 2024 Feb; 24(3):. PubMed ID: 38339729 [TBL] [Abstract][Full Text] [Related]
2. Reference signal less Fourier analysis based motion artifact removal algorithm for wearable photoplethysmography devices to estimate heart rate during physical exercises. Pankaj ; Kumar A; Komaragiri R; Kumar M Comput Biol Med; 2022 Feb; 141():105081. PubMed ID: 34952340 [TBL] [Abstract][Full Text] [Related]
3. Photoplethysmographic Time-Domain Heart Rate Measurement Algorithm for Resource-Constrained Wearable Devices and its Implementation. Wójcikowski M; Pankiewicz B Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32210210 [TBL] [Abstract][Full Text] [Related]
4. SPECMAR: fast heart rate estimation from PPG signal using a modified spectral subtraction scheme with composite motion artifacts reference generation. Islam MT; Ahmed ST; Shahnaz C; Fattah SA Med Biol Eng Comput; 2019 Mar; 57(3):689-702. PubMed ID: 30349957 [TBL] [Abstract][Full Text] [Related]
5. Robust Heart Rate Estimation During Physical Exercise Using Photoplethysmographic Signals. Motin MA; Karmakar CK; Palaniswami M Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():494-497. PubMed ID: 30440442 [TBL] [Abstract][Full Text] [Related]
6. Wireless photoplethysmographic device for heart rate variability signal acquisition and analysis. Reyes I; Nazeran H; Franco M; Haltiwanger E Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2092-5. PubMed ID: 23366333 [TBL] [Abstract][Full Text] [Related]
7. SPARE: A Spectral Peak Recovery Algorithm for PPG Signals Pulsewave Reconstruction in Multimodal Wearable Devices. Masinelli G; Dell'Agnola F; Valdés AA; Atienza D Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924351 [TBL] [Abstract][Full Text] [Related]
8. A new approach to HR monitoring using photoplethysmographic signals during intensive physical exercise. Chen G; Yuan X; Zhang Y; Song X Phys Eng Sci Med; 2021 Jun; 44(2):535-543. PubMed ID: 33929712 [TBL] [Abstract][Full Text] [Related]
9. Real-Time PPG Signal Conditioning with Long Short-Term Memory (LSTM) Network for Wearable Devices. Wójcikowski M Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009705 [TBL] [Abstract][Full Text] [Related]
10. A Novel Time-Varying Spectral Filtering Algorithm for Reconstruction of Motion Artifact Corrupted Heart Rate Signals During Intense Physical Activities Using a Wearable Photoplethysmogram Sensor. Salehizadeh SM; Dao D; Bolkhovsky J; Cho C; Mendelson Y; Chon KH Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703618 [TBL] [Abstract][Full Text] [Related]
11. Heart Rate Estimation using PPG signal during Treadmill Exercise. Kong Y; Chon K Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3253-3256. PubMed ID: 31946579 [TBL] [Abstract][Full Text] [Related]
12. Real-Time Robust Heart Rate Estimation From Wrist-Type PPG Signals Using Multiple Reference Adaptive Noise Cancellation. Chowdhury SS; Hyder R; Hafiz MSB; Haque MA IEEE J Biomed Health Inform; 2018 Mar; 22(2):450-459. PubMed ID: 27893403 [TBL] [Abstract][Full Text] [Related]
13. Characterization and reduction of motion artifacts in photoplethysmographic signals from a wrist-worn device. Tăuţan AM; Young A; Wentink E; Wieringa F Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6146-9. PubMed ID: 26737695 [TBL] [Abstract][Full Text] [Related]
14. A comb filter based signal processing method to effectively reduce motion artifacts from photoplethysmographic signals. Peng F; Liu H; Wang W Physiol Meas; 2015 Oct; 36(10):2159-70. PubMed ID: 26334000 [TBL] [Abstract][Full Text] [Related]
15. A novel computational signal processing framework towards multimodal vital signs extraction using neck-worn wearable devices. Abdulsadig RS; Rodriguez-Villegas E Sci Rep; 2024 Sep; 14(1):22368. PubMed ID: 39333140 [TBL] [Abstract][Full Text] [Related]
16. Brno University of Technology Smartphone PPG Database (BUT PPG): Annotated Dataset for PPG Quality Assessment and Heart Rate Estimation. Nemcova A; Vargova E; Smisek R; Marsanova L; Smital L; Vitek M Biomed Res Int; 2021; 2021():3453007. PubMed ID: 34532501 [TBL] [Abstract][Full Text] [Related]
17. Wearable Ring-Shaped Biomedical Device for Physiological Monitoring through Finger-Based Acquisition of Electrocardiographic, Photoplethysmographic, and Galvanic Skin Response Signals: Design and Preliminary Measurements. Volpes G; Valenti S; Genova G; Barà C; Parisi A; Faes L; Busacca A; Pernice R Biosensors (Basel); 2024 Apr; 14(4):. PubMed ID: 38667198 [TBL] [Abstract][Full Text] [Related]
18. Optimized Signal Quality Assessment for Photoplethysmogram Signals Using Feature Selection. Mohagheghian F; Han D; Peitzsch A; Nishita N; Ding E; Dickson EL; DiMezza D; Otabil EM; Noorishirazi K; Scott J; Lessard D; Wang Z; Whitcomb C; Tran KV; Fitzgibbons TP; McManus DD; Chon KH IEEE Trans Biomed Eng; 2022 Sep; 69(9):2982-2993. PubMed ID: 35275809 [TBL] [Abstract][Full Text] [Related]
19. Sources of Inaccuracy in Photoplethysmography for Continuous Cardiovascular Monitoring. Fine J; Branan KL; Rodriguez AJ; Boonya-Ananta T; Ajmal ; Ramella-Roman JC; McShane MJ; Coté GL Biosensors (Basel); 2021 Apr; 11(4):. PubMed ID: 33923469 [TBL] [Abstract][Full Text] [Related]
20. A Robust Motion Artifact Detection Algorithm for Accurate Detection of Heart Rates From Photoplethysmographic Signals Using Time-Frequency Spectral Features. Dao D; Salehizadeh SMA; Noh Y; Chong JW; Cho CH; McManus D; Darling CE; Mendelson Y; Chon KH IEEE J Biomed Health Inform; 2017 Sep; 21(5):1242-1253. PubMed ID: 28113791 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]