BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38340067)

  • 1. Monolithic Strong Coupling of Topological Surface Acoustic Wave Resonators on Lithium Niobate.
    Zhang ZD; Yu SY; Xu H; Lu MH; Chen YF
    Adv Mater; 2024 May; 36(21):e2312861. PubMed ID: 38340067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface modification and coherence in lithium niobate SAW resonators.
    Gruenke RG; Hitchcock OA; Wollack EA; Sarabalis CJ; Jankowski M; McKenna TP; Lee NR; Safavi-Naeini AH
    Sci Rep; 2024 Mar; 14(1):6663. PubMed ID: 38509245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Valley Pseudospin Polarized Evanescent Coupling between Microwave Ring Resonator and Waveguide in Phononic Topological Insulators.
    Hatanaka D; Takeshita H; Kataoka M; Okamoto H; Tsuruta K; Yamaguchi H
    Nano Lett; 2024 May; 24(18):5570-5577. PubMed ID: 38634512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strongly Coupled Spin Waves and Surface Acoustic Waves at Room Temperature.
    Hwang Y; Puebla J; Kondou K; Gonzalez-Ballestero C; Isshiki H; Muñoz CS; Liao L; Chen F; Luo W; Maekawa S; Otani Y
    Phys Rev Lett; 2024 Feb; 132(5):056704. PubMed ID: 38364117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnon-Phonon Coupling of Synthetic Antiferromagnets in a Surface Acoustic Wave Cavity Resonator.
    Matsumoto H; Yasuda I; Asano M; Todaka Y; Kawada T; Kawaguchi M; Hatanaka D; Hayashi M
    Nano Lett; 2024 May; 24(19):5683-5689. PubMed ID: 38661679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Phonon Antibunching in a Circuit Quantum Acoustodynamical System Containing Two Surface Acoustic Wave Resonators.
    Yin TS; Jin GR; Chen A
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monolithic phononic crystals with a surface acoustic band gap from surface phonon-polariton coupling.
    Yudistira D; Boes A; Djafari-Rouhani B; Pennec Y; Yeo LY; Mitchell A; Friend JR
    Phys Rev Lett; 2014 Nov; 113(21):215503. PubMed ID: 25479504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dipole states and coherent interaction in surface-acoustic-wave coupled phononic resonators.
    Raguin L; Gaiffe O; Salut R; Cote JM; Soumann V; Laude V; Khelif A; Benchabane S
    Nat Commun; 2019 Oct; 10(1):4583. PubMed ID: 31594937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lithium Niobate Phononic Crystals for Tailoring Performance of RF Laterally Vibrating Devices.
    Lu R; Manzaneque T; Yang Y; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):934-944. PubMed ID: 29856710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Electron-Phonon Coupling of Quantum Defects to a Semiconfocal Acoustic Resonator.
    Chen H; Opondo NF; Jiang B; MacQuarrie ER; Daveau RS; Bhave SA; Fuchs GD
    Nano Lett; 2019 Oct; 19(10):7021-7027. PubMed ID: 31498998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-sensitivity non-cooled near-infrared detector based on lithium niobate surface acoustic wave resonators combined with MXene Ti
    Feng L; Liu G; Guo P; Jiang Y; Ma X; Chen Y; Luo J
    Opt Express; 2023 Jul; 31(16):25829-25839. PubMed ID: 37710458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strongly Coupled Nanotube Electromechanical Resonators.
    Deng GW; Zhu D; Wang XH; Zou CL; Wang JT; Li HO; Cao G; Liu D; Li Y; Xiao M; Guo GC; Jiang KL; Dai XC; Guo GP
    Nano Lett; 2016 Sep; 16(9):5456-62. PubMed ID: 27487412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrications of L-band LiNbO
    Hu B; Zhang S; Zhang H; Lv W; Zhang C; Lv X; San H
    Micromachines (Basel); 2019 May; 10(6):. PubMed ID: 31141949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Q-Factor Enhancement of Thin-Film Piezoelectric-on-Silicon MEMS Resonator by Phononic Crystal-Reflector Composite Structure.
    Liu J; Workie TB; Wu T; Wu Z; Gong K; Bao J; Hashimoto KY
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33419352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong coupling of multiple optical interface modes with ultra-narrow linewidth in one-dimensional topological photonic heterostructures.
    Qiu W; Zhou L; Wang Y; Jiang X; Huang C; Zhou L; Zhan Q; Hu J
    Opt Express; 2023 Jun; 31(12):20457-20470. PubMed ID: 37381440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong coupling of optical interface modes in a 1D topological photonic crystal heterostructure/Ag hybrid system.
    Hu J; Liu W; Xie W; Zhang W; Yao E; Zhang Y; Zhan Q
    Opt Lett; 2019 Nov; 44(22):5642-5645. PubMed ID: 31730127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical couplings in topological-insulator waveguide-resonator systems observed in elastic waves.
    Yu SY; He C; Sun XC; Wang HF; Wang JQ; Zhang ZD; Xie BY; Tian Y; Lu MH; Chen YF
    Natl Sci Rev; 2021 Feb; 8(2):nwaa262. PubMed ID: 34691579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chip-scale cavity optomechanics in lithium niobate.
    Jiang WC; Lin Q
    Sci Rep; 2016 Nov; 6():36920. PubMed ID: 27841301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep-Subwavelength Holey Acoustic Second-Order Topological Insulators.
    Zhang Z; Long H; Liu C; Shao C; Cheng Y; Liu X; Christensen J
    Adv Mater; 2019 Dec; 31(49):e1904682. PubMed ID: 31650654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Planar coupling to high-Q lithium niobate disk resonators.
    Nunzi Conti G; Berneschi S; Cosi F; Pelli S; Soria S; Righini GC; Dispenza M; Secchi A
    Opt Express; 2011 Feb; 19(4):3651-6. PubMed ID: 21369190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.