These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38340067)

  • 41. Coherent backscattering in lithium niobate whispering-gallery-mode resonators.
    Mohageg M; Savchenkov A; Maleki L
    Opt Lett; 2007 Sep; 32(17):2574-6. PubMed ID: 17767309
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Coupled topological rainbow trapping of elastic waves in two-dimensional phononic crystals.
    Fang H; Xie G; Huang H; Chen J
    Sci Rep; 2024 Jul; 14(1):17011. PubMed ID: 39043830
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Wavelength-Tunable Narrow-Linewidth Laser Diode Based on Self-Injection Locking with a High-Q Lithium Niobate Microring Resonator.
    Huang T; Ma Y; Fang Z; Zhou J; Zhou Y; Wang Z; Liu J; Wang Z; Zhang H; Wang M; Xu J; Cheng Y
    Nanomaterials (Basel); 2023 Mar; 13(5):. PubMed ID: 36903826
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chemical sensor based on surface acoustic wave resonator using Langmuir-Blodgett film.
    Nomura T; Takebayashi R; Saitoh A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1261-5. PubMed ID: 18244288
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optimized, Omnidirectional Surface Acoustic Wave Source: 152° Y-Rotated Cut of Lithium Niobate for Acoustofluidics.
    Zhang N; Mei J; Gopesh T; Friend J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Oct; 67(10):2176-2186. PubMed ID: 32396083
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Laterally Vibrating Lithium Niobate MEMS Resonator Array Operating at 500 °C in Air.
    Eisner SR; Chapin CA; Lu R; Yang Y; Gong S; Senesky DG
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33383685
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Extended topological valley-locked surface acoustic waves.
    Wang JQ; Zhang ZD; Yu SY; Ge H; Liu KF; Wu T; Sun XC; Liu L; Chen HY; He C; Lu MH; Chen YF
    Nat Commun; 2022 Mar; 13(1):1324. PubMed ID: 35288550
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Experimental Investigation of Surface Acoustic Wave Acoustoelectric Effect Using a Graphene Film on Lithium Niobate.
    Carmichael CP; Smith MS; Weeks AR; Malocha DC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):2205-2207. PubMed ID: 30235124
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gigahertz Low-Loss and Wideband S0 Mode Lithium Niobate Acoustic Delay Lines.
    Lu R; Manzaneque T; Yang Y; Li MH; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Aug; 66(8):1373-1386. PubMed ID: 31094687
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microwave bulk-acoustic-wave reflection-grating resonators.
    Oates DE; Pan JY
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(3):315-22. PubMed ID: 18290157
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dual-Mode Hybrid Quasi-SAW/BAW Resonators With High Effective Coupling Coefficient.
    Zhang Y; Zhou J; Xie Y; Tang C; Zou Y; Tovstopyat A; Yu H; Sun C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Sep; 67(9):1916-1921. PubMed ID: 32286971
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Novel on chip rotation detection based on the acousto-optic effect in surface acoustic wave gyroscopes.
    Mahmoud M; Mahmoud A; Cai L; Khan M; Mukherjee T; Bain J; Piazza G
    Opt Express; 2018 Sep; 26(19):25060-25075. PubMed ID: 30469614
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimization of LiNbO
    Naumenko NF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jul; 67(7):1485-1491. PubMed ID: 31995482
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrically tuned coupling of lithium niobate microresonators.
    Jia D; Zhang R; Yang C; Hao Z; Yu X; Gao F; Bo F; Zhang G; Xu J
    Opt Lett; 2023 May; 48(10):2744-2747. PubMed ID: 37186755
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Approaching the intrinsic quality factor limit for micromechanical bulk acoustic resonators using phononic crystal tethers.
    Gokhale VJ; Gorman JJ
    Appl Phys Lett; 2017; 111(1):. PubMed ID: 29307895
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Strong Optomechanical Interaction in Hybrid Plasmonic-Photonic Crystal Nanocavities with Surface Acoustic Waves.
    Lin TR; Lin CH; Hsu JC
    Sci Rep; 2015 Sep; 5():13782. PubMed ID: 26346448
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Resonant frequency characteristics of a SAW device attached to resonating micropillars.
    Ramakrishnan N; Nemade HB; Palathinkal RP
    Sensors (Basel); 2012; 12(4):3789-97. PubMed ID: 22666001
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modulating the Performance of the SAW Strain Sensor Based on Dual-Port Resonator Using FEM Simulation.
    Cheng C; Lu Z; Yang J; Gong X; Ke Q
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37110107
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Near Spurious-Free Thickness Shear Mode Lithium Niobate Resonator for Piezoelectric Power Conversion.
    Nguyen K; Chulukhadze V; Stolt E; Braun W; Segovia-Fernandez J; Chakraborty S; Rivas J; Lu R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Nov; 70(11):1536-1543. PubMed ID: 37549088
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate.
    Witmer JD; Valery JA; Arrangoiz-Arriola P; Sarabalis CJ; Hill JT; Safavi-Naeini AH
    Sci Rep; 2017 Apr; 7():46313. PubMed ID: 28406177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.