These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 38340415)
1. Colorimetric discrimination and spectroscopic detection of tyrosine enantiomers based on melamine induced aggregation of l-cysteine/Au nanoparticles. Chen H; Luo Y; Cai W; Xu L; Li J; Kong Y Talanta; 2024 May; 271():125758. PubMed ID: 38340415 [TBL] [Abstract][Full Text] [Related]
2. Colorimetric detection of melamine in milk by citrate-stabilized gold nanoparticles. Kumar N; Seth R; Kumar H Anal Biochem; 2014 Jul; 456():43-9. PubMed ID: 24727351 [TBL] [Abstract][Full Text] [Related]
3. Colorimetric detection of melamine in milk based on Triton X-100 modified gold nanoparticles and its paper-based application. Gao N; Huang P; Wu F Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 192():174-180. PubMed ID: 29136582 [TBL] [Abstract][Full Text] [Related]
4. Sensitive colorimetric detection of melamine in processed raw milk using asymmetrically PEGylated gold nanoparticles. Chen XY; Ha W; Shi YP Talanta; 2019 Mar; 194():475-484. PubMed ID: 30609561 [TBL] [Abstract][Full Text] [Related]
5. PEGylated NALC-functionalized gold nanoparticles for colorimetric discrimination of chiral tyrosine. Chen XY; Ha W; Jin XJ; Shi YP Analyst; 2020 Nov; 145(22):7397-7405. PubMed ID: 32935670 [TBL] [Abstract][Full Text] [Related]
6. Colorimetric sensing of selenocystine using gold nanoparticles. Liu L; Wang X; Yang J; Bai Y Anal Biochem; 2017 Oct; 535():19-24. PubMed ID: 28739132 [TBL] [Abstract][Full Text] [Related]
7. Highly Sensitive Aptamer-Based Colorimetric Detection of Melamine in Raw Milk with Cysteamine-Stabilized Gold Nanoparticles. Zheng H; Li Y; Xu J; Bie J; Liu X; Guo J; Luo Y; Shen F; Sun C; Yu Y J Nanosci Nanotechnol; 2017 Feb; 17(2):853-61. PubMed ID: 29668219 [TBL] [Abstract][Full Text] [Related]
8. A Simple and Green Route for Room-Temperature Synthesis of Gold Nanoparticles and Selective Colorimetric Detection of Cysteine. Bagci PO; Wang YC; Gunasekaran S J Food Sci; 2015 Sep; 80(9):N2071-8. PubMed ID: 26239641 [TBL] [Abstract][Full Text] [Related]
9. Colorimetric sensor for cysteine in human urine based on novel gold nanoparticles. Zhang Y; Jiang J; Li M; Gao P; Zhou Y; Zhang G; Shuang S; Dong C Talanta; 2016 Dec; 161():520-527. PubMed ID: 27769441 [TBL] [Abstract][Full Text] [Related]
10. Novel rapid detection of melamine based on the synergistic aggregation of gold nanoparticles. Cao W; Shan S; Xing K; Jing X; Peng J; Xiao X; Liu D; Xia J; Lai W Food Chem; 2023 Dec; 428():136789. PubMed ID: 37423110 [TBL] [Abstract][Full Text] [Related]
11. Colorimetric detection of Cd2+ using gold nanoparticles cofunctionalized with 6-mercaptonicotinic acid and L-cysteine. Xue Y; Zhao H; Wu Z; Li X; He Y; Yuan Z Analyst; 2011 Sep; 136(18):3725-30. PubMed ID: 21804959 [TBL] [Abstract][Full Text] [Related]
12. Colorimetric detection of melamine based on methanobactin-mediated synthesis of gold nanoparticles. Xin JY; Zhang LX; Chen DD; Lin K; Fan HC; Wang Y; Xia CG Food Chem; 2015 May; 174():473-9. PubMed ID: 25529708 [TBL] [Abstract][Full Text] [Related]
13. Colorimetric detection of ractopamine and salbutamol using gold nanoparticles functionalized with melamine as a probe. Zhou Y; Wang P; Su X; Zhao H; He Y Talanta; 2013 Aug; 112():20-5. PubMed ID: 23708531 [TBL] [Abstract][Full Text] [Related]
14. Label-free colorimetric detection of biothiols utilizing SAM and unmodified Au nanoparticles. Li ZJ; Zheng XJ; Zhang L; Liang RP; Li ZM; Qiu JD Biosens Bioelectron; 2015 Jun; 68():668-674. PubMed ID: 25660511 [TBL] [Abstract][Full Text] [Related]
15. Picomolar melamine enhanced the fluorescence of gold nanoparticles: spectrofluorimetric determination of melamine in milk and infant formulas using functionalized triazole capped gold nanoparticles. Vasimalai N; Abraham John S Biosens Bioelectron; 2013 Apr; 42():267-72. PubMed ID: 23208097 [TBL] [Abstract][Full Text] [Related]
16. Anti-aggregation of gold nanoparticle-based colorimetric sensor for glutathione with excellent selectivity and sensitivity. Li Y; Wu P; Xu H; Zhang H; Zhong X Analyst; 2011 Jan; 136(1):196-200. PubMed ID: 20931106 [TBL] [Abstract][Full Text] [Related]
17. Silicon quantum dot-coated onto gold nanoparticles as an optical probe for colorimetric and fluorometric determination of cysteine. Liu L; Zhu G; Zeng W; Yi Y; Lv B; Qian J; Zhang D Mikrochim Acta; 2019 Jan; 186(2):98. PubMed ID: 30631943 [TBL] [Abstract][Full Text] [Related]
18. Aptamer-functionalized AuNPs for the high-sensitivity colorimetric detection of melamine in milk samples. Hu X; Chang K; Wang S; Sun X; Hu J; Jiang M PLoS One; 2018; 13(8):e0201626. PubMed ID: 30071096 [TBL] [Abstract][Full Text] [Related]
19. Lab-in-a-syringe using gold nanoparticles for rapid colorimetric chiral discrimination of enantiomers. Zor E; Bekar N Biosens Bioelectron; 2017 May; 91():211-216. PubMed ID: 28011416 [TBL] [Abstract][Full Text] [Related]
20. Colorimetric recognition of aromatic amino acid enantiomers by gluconic acid-capped gold nanoparticles. Yang J; Li X; Du Y; Ma M; Zhang L; Zhang J; Li P Amino Acids; 2021 Feb; 53(2):195-204. PubMed ID: 33432455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]