These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38340442)

  • 1. Rapid and accurate identification of bakanae pathogens carried by rice seeds based on hyperspectral imaging and deep transfer learning.
    Wu N; Weng S; Xiao Q; Jiang H; Zhao Y; He Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Apr; 311():123889. PubMed ID: 38340442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and Accurate Varieties Classification of Different Crop Seeds Under Sample-Limited Condition Based on Hyperspectral Imaging and Deep Transfer Learning.
    Wu N; Liu F; Meng F; Li M; Zhang C; He Y
    Front Bioeng Biotechnol; 2021; 9():696292. PubMed ID: 34368096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Rapid Non-Destructive Differentiation of Different Varieties of Rice by Fluorescence Hyperspectral Technology Combined with Machine Learning.
    Kang Z; Fan R; Zhan C; Wu Y; Lin Y; Li K; Qing R; Xu L
    Molecules; 2024 Feb; 29(3):. PubMed ID: 38338424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Bacterial Blight Resistant Rice Seeds Using Terahertz Imaging and Hyperspectral Imaging Combined With Convolutional Neural Network.
    Zhang J; Yang Y; Feng X; Xu H; Chen J; He Y
    Front Plant Sci; 2020; 11():821. PubMed ID: 32670316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperspectral imaging technology combined with deep forest model to identify frost-damaged rice seeds.
    Zhang L; Sun H; Rao Z; Ji H
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117973. PubMed ID: 31887678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Deep Learning Framework for Processing and Classification of Hyperspectral Rice Seed Images Grown under High Day and Night Temperatures.
    Díaz-Martínez V; Orozco-Sandoval J; Manian V; Dhatt BK; Walia H
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rice seed vigor detection based on near-infrared hyperspectral imaging and deep transfer learning.
    Qi H; Huang Z; Sun Z; Tang Q; Zhao G; Zhu X; Zhang C
    Front Plant Sci; 2023; 14():1283921. PubMed ID: 37936942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early surveillance of rice bakanae disease using deep learning and hyperspectral imaging.
    Chen S; Lu X; Fang H; Perumal AB; Li R; Feng L; Wang M; Liu Y
    aBIOTECH; 2024 Sep; 5(3):281-297. PubMed ID: 39279856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-Infrared Hyperspectral Imaging Combined with Deep Learning to Identify Cotton Seed Varieties.
    Zhu S; Zhou L; Gao P; Bao Y; He Y; Feng L
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31500333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Rice Seed Varieties Based on Near-Infrared Hyperspectral Imaging Technology Combined with Deep Learning.
    Jin B; Zhang C; Jia L; Tang Q; Gao L; Zhao G; Qi H
    ACS Omega; 2022 Feb; 7(6):4735-4749. PubMed ID: 35187294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rice seed cultivar identification using near-infrared hyperspectral imaging and multivariate data analysis.
    Kong W; Zhang C; Liu F; Nie P; He Y
    Sensors (Basel); 2013 Jul; 13(7):8916-27. PubMed ID: 23857260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperspectral imaging for accurate determination of rice variety using a deep learning network with multi-feature fusion.
    Weng S; Tang P; Yuan H; Guo B; Yu S; Huang L; Xu C
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jun; 234():118237. PubMed ID: 32200232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the vigor of rice seeds by near-infrared hyperspectral imaging combined with transfer learning.
    Yang Y; Chen J; He Y; Liu F; Feng X; Zhang J
    RSC Adv; 2020 Dec; 10(72):44149-44158. PubMed ID: 35517156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A calibration transfer optimized single kernel near-infrared spectroscopic method.
    Xu Z; Fan S; Liu J; Liu B; Tao L; Wu J; Hu S; Zhao L; Wang Q; Wu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep; 220():117098. PubMed ID: 31129498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Current Studies on Bakanae Disease in Rice: Host Range, Molecular Identification, and Disease Management.
    An YN; Murugesan C; Choi H; Kim KD; Chun SC
    Mycobiology; 2023; 51(4):195-209. PubMed ID: 37711983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid and nondestructive watermelon (Citrullus lanatus) seed viability detection based on visible near-infrared hyperspectral imaging technology and machine learning algorithms.
    Sun J; Nirere A; Dusabe KD; Yuhao Z; Adrien G
    J Food Sci; 2024 Jul; 89(7):4403-4418. PubMed ID: 38957090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrimination of CRISPR/Cas9-induced mutants of rice seeds using near-infrared hyperspectral imaging.
    Feng X; Peng C; Chen Y; Liu X; Feng X; He Y
    Sci Rep; 2017 Nov; 7(1):15934. PubMed ID: 29162881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperspectral Imaging Combined With Deep Transfer Learning for Rice Disease Detection.
    Feng L; Wu B; He Y; Zhang C
    Front Plant Sci; 2021; 12():693521. PubMed ID: 34659278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of sweet corn seed viability based on hyperspectral imaging combined with firefly algorithm optimized deep learning.
    Wang Y; Song S
    Front Plant Sci; 2024; 15():1361309. PubMed ID: 38751847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishment and comparison of
    Bai Z; Du D; Zhu R; Xing F; Yang C; Yan J; Zhang Y; Kang L
    Front Nutr; 2024; 11():1325934. PubMed ID: 38406188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.