These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38340562)
1. Stibnite dissolution and Sb oxidation by Paraccocus versutus XT0.6 via direct and indirect contact. Li M; Wang W; Wu M; Lei J; Lu X; Wang H J Hazard Mater; 2024 Apr; 467():133731. PubMed ID: 38340562 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of microbial dissolution and oxidation of antimony in stibnite under ambient conditions. Loni PC; Wu M; Wang W; Wang H; Ma L; Liu C; Song Y; H Tuovinen O J Hazard Mater; 2020 Mar; 385():121561. PubMed ID: 31740307 [TBL] [Abstract][Full Text] [Related]
3. Antimony transformation and mobilization from stibnite by an antimonite oxidizing bacterium Bosea sp. AS-1. Xiang L; Liu C; Liu D; Ma L; Qiu X; Wang H; Lu X J Environ Sci (China); 2022 Jan; 111():273-281. PubMed ID: 34949357 [TBL] [Abstract][Full Text] [Related]
4. Antimony precipitation and removal by antimony hyper resistant strain Achromobacter sp. 25-M. Loni PC; Wang W; Qiu X; Man B; Wu M; Qiu D; Wang H Environ Res; 2024 Mar; 245():118011. PubMed ID: 38141916 [TBL] [Abstract][Full Text] [Related]
5. Enhancement Mechanism of Stibnite Dissolution Mediated by Wang C; Xia JL; Liu HC; Zhou YH; Nie ZY; Chen L; Shu WS Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408938 [TBL] [Abstract][Full Text] [Related]
6. Extracellular proteins of Desulfovibrio vulgaris as adsorbents and redox shuttles promote biomineralization of antimony. Yu H; Yan X; Weng W; Xu S; Xu G; Gu T; Guan X; Liu S; Chen P; Wu Y; Xiao F; Wang C; Shu L; Wu B; Qiu D; He Z; Yan Q J Hazard Mater; 2022 Mar; 426():127795. PubMed ID: 34801311 [TBL] [Abstract][Full Text] [Related]
7. Microbial Reduction of Antimony(V)-Bearing Ferrihydrite by Geobacter sulfurreducens. Xie J; Coker VS; O'Driscoll B; Cai R; Haigh SJ; Lloyd JR Appl Environ Microbiol; 2023 Mar; 89(3):e0217522. PubMed ID: 36853045 [TBL] [Abstract][Full Text] [Related]
8. Understanding the goethite role on stibnite oxidative dissolution and transformation: Spectroscopic and DFT study. Jin Y; Qiu Y; Kumar R; Chan T; Yan L Sci Total Environ; 2024 Jan; 906():167823. PubMed ID: 37844637 [TBL] [Abstract][Full Text] [Related]
9. Sorption of Sb(III) and Sb(V) to goethite: influence on Sb(III) oxidation and mobilization. Leuz AK; Mönch H; Johnson CA Environ Sci Technol; 2006 Dec; 40(23):7277-82. PubMed ID: 17180978 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic study for stibnite oxidative dissolution and sequestration on pyrite. Yan L; Chan T; Jing C Environ Pollut; 2020 Jul; 262():114309. PubMed ID: 32155558 [TBL] [Abstract][Full Text] [Related]
11. Multiple effects of nitrate amendment on the transport, transformation and bioavailability of antimony in a paddy soil-rice plant system. Zhang X; Liu T; Li F; Li X; Du Y; Yu H; Wang X; Liu C; Feng M; Liao B J Environ Sci (China); 2021 Feb; 100():90-98. PubMed ID: 33279057 [TBL] [Abstract][Full Text] [Related]
12. Induced transformation of antimony trioxide by Mn(II) oxidation and their co-transformed mechanism. Lv Y; Zhang C; Nan C; Fan Z; Huang S J Environ Sci (China); 2023 Jul; 129():69-78. PubMed ID: 36804243 [TBL] [Abstract][Full Text] [Related]
13. Influence of the Chemical Form of Antimony on Soil Microbial Community Structure and Arsenite Oxidation Activity. Kataoka T; Mitsunobu S; Hamamura N Microbes Environ; 2018 Jul; 33(2):214-221. PubMed ID: 29887548 [TBL] [Abstract][Full Text] [Related]
14. Proteomics and Genetics for Identification of a Bacterial Antimonite Oxidase in Agrobacterium tumefaciens. Li J; Wang Q; Li M; Yang B; Shi M; Guo W; McDermott TR; Rensing C; Wang G Environ Sci Technol; 2015 May; 49(10):5980-9. PubMed ID: 25909855 [TBL] [Abstract][Full Text] [Related]
15. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates. Karimian N; Burton ED; Johnston SG Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811 [TBL] [Abstract][Full Text] [Related]
16. Mechanisms of adaptive resistance in Phytobacter sp. X4 to antimony stress under anaerobic conditions. Xiao S; Wang M; Amanze C; Anaman R; Ssekimpi D; Zeng W J Hazard Mater; 2024 Nov; 479():135628. PubMed ID: 39208624 [TBL] [Abstract][Full Text] [Related]
17. How iron-bearing minerals affect the biological reduction of Sb(V): A newly discovered function of nitrate reductase. Zhang H; Sun Y; Cheng M; Sui X; Huang Y; Hu X Sci Total Environ; 2023 Dec; 904():167001. PubMed ID: 37704155 [TBL] [Abstract][Full Text] [Related]
18. Removal of antimony (Sb(V)) from Sb mine drainage: biological sulfate reduction and sulfide oxidation-precipitation. Wang H; Chen F; Mu S; Zhang D; Pan X; Lee DJ; Chang JS Bioresour Technol; 2013 Oct; 146():799-802. PubMed ID: 23993285 [TBL] [Abstract][Full Text] [Related]
19. Antimony Isotope Fractionation during Kinetic Sb(III) Oxidation by Antimony-Oxidizing Bacteria Jia X; Kaufmann A; Lazarov M; Wen B; Weyer S; Zhou J; Ma L; Majzlan J Environ Sci Technol; 2024 Jul; 58(26):11411-11420. PubMed ID: 38887934 [TBL] [Abstract][Full Text] [Related]
20. Different fates of Sb(III) and Sb(V) during the formation of jarosite mediated by Acidithiobacillus ferrooxidans. Chen L; Wang Y; Liu H; Zhou Y; Nie Z; Xia J; Shu W J Environ Sci (China); 2025 Jan; 147():342-358. PubMed ID: 39003052 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]