BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38340573)

  • 1. Improving abdominal image segmentation with overcomplete shape priors.
    Sadikine A; Badic B; Tasu JP; Noblet V; Ballet P; Visvikis D; Conze PH
    Comput Med Imaging Graph; 2024 Apr; 113():102356. PubMed ID: 38340573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abdominal multi-organ segmentation with cascaded convolutional and adversarial deep networks.
    Conze PH; Kavur AE; Cornec-Le Gall E; Gezer NS; Le Meur Y; Selver MA; Rousseau F
    Artif Intell Med; 2021 Jul; 117():102109. PubMed ID: 34127239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KiU-Net: Overcomplete Convolutional Architectures for Biomedical Image and Volumetric Segmentation.
    Valanarasu JMJ; Sindagi VA; Hacihaliloglu I; Patel VM
    IEEE Trans Med Imaging; 2022 Apr; 41(4):965-976. PubMed ID: 34813472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.
    Hu P; Wu F; Peng J; Bao Y; Chen F; Kong D
    Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):399-411. PubMed ID: 27885540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OBELISK-Net: Fewer layers to solve 3D multi-organ segmentation with sparse deformable convolutions.
    Heinrich MP; Oktay O; Bouteldja N
    Med Image Anal; 2019 May; 54():1-9. PubMed ID: 30807894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abdomen CT multi-organ segmentation using token-based MLP-Mixer.
    Pan S; Chang CW; Wang T; Wynne J; Hu M; Lei Y; Liu T; Patel P; Roper J; Yang X
    Med Phys; 2023 May; 50(5):3027-3038. PubMed ID: 36463516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abdominal multi-organ auto-segmentation using 3D-patch-based deep convolutional neural network.
    Kim H; Jung J; Kim J; Cho B; Kwak J; Jang JY; Lee SW; Lee JG; Yoon SM
    Sci Rep; 2020 Apr; 10(1):6204. PubMed ID: 32277135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abdominal multi-organ segmentation with organ-attention networks and statistical fusion.
    Wang Y; Zhou Y; Shen W; Park S; Fishman EK; Yuille AL
    Med Image Anal; 2019 Jul; 55():88-102. PubMed ID: 31035060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DENSE-INception U-net for medical image segmentation.
    Zhang Z; Wu C; Coleman S; Kerr D
    Comput Methods Programs Biomed; 2020 Aug; 192():105395. PubMed ID: 32163817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-dimensional transfer learning in medical image segmentation with deep learning.
    Messaoudi H; Belaid A; Ben Salem D; Conze PH
    Med Image Anal; 2023 Aug; 88():102868. PubMed ID: 37384952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TeTrIS: Template Transformer Networks for Image Segmentation With Shape Priors.
    Lee MCH; Petersen K; Pawlowski N; Glocker B; Schaap M
    IEEE Trans Med Imaging; 2019 Nov; 38(11):2596-2606. PubMed ID: 30908196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient contour-based annotation by iterative deep learning for organ segmentation from volumetric medical images.
    Zhuang M; Chen Z; Wang H; Tang H; He J; Qin B; Yang Y; Jin X; Yu M; Jin B; Li T; Kettunen L
    Int J Comput Assist Radiol Surg; 2023 Feb; 18(2):379-394. PubMed ID: 36048319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TSCA-Net: Transformer based spatial-channel attention segmentation network for medical images.
    Fu Y; Liu J; Shi J
    Comput Biol Med; 2024 Mar; 170():107938. PubMed ID: 38219644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.
    Men K; Dai J; Li Y
    Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IBA-U-Net: Attentive BConvLSTM U-Net with Redesigned Inception for medical image segmentation.
    Chen S; Zou Y; Liu PX
    Comput Biol Med; 2021 Aug; 135():104551. PubMed ID: 34157471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CAM-Wnet: An effective solution for accurate pulmonary embolism segmentation.
    Liu Z; Yuan H; Wang H
    Med Phys; 2022 Aug; 49(8):5294-5303. PubMed ID: 35609213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved accuracy of auto-segmentation of organs at risk in radiotherapy planning for nasopharyngeal carcinoma based on fully convolutional neural network deep learning.
    Peng Y; Liu Y; Shen G; Chen Z; Chen M; Miao J; Zhao C; Deng J; Qi Z; Deng X
    Oral Oncol; 2023 Jan; 136():106261. PubMed ID: 36446186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-Dimensional Cascaded Net with Uncertain Probability Reduction for Abdominal Multi-Organ Segmentation in CT Sequences.
    Li C; Mao Y; Guo Y; Li J; Wang Y
    Comput Methods Programs Biomed; 2022 Jun; 221():106887. PubMed ID: 35597204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new architecture combining convolutional and transformer-based networks for automatic 3D multi-organ segmentation on CT images.
    Li C; Bagher-Ebadian H; Sultan R; Elshaikh M; Movsas B; Zhu D; Chetty IJ
    Med Phys; 2023 Nov; 50(11):6990-7002. PubMed ID: 37738468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.