BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38340640)

  • 21. Inhibition of ricin A-chain (RTA) catalytic activity by a viral genome-linked protein (VPg).
    Aitbakieva VR; Ahmad R; Singh S; Domashevskiy AV
    Biochim Biophys Acta Proteins Proteom; 2019 Jun; 1867(6):645-653. PubMed ID: 30822539
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional divergence between the two P1-P2 stalk dimers on the ribosome in their interaction with ricin A chain.
    Grela P; Li XP; Tchórzewski M; Tumer NE
    Biochem J; 2014 May; 460(1):59-67. PubMed ID: 24576056
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conserved Arginines at the P-Protein Stalk Binding Site and the Active Site Are Critical for Ribosome Interactions of Shiga Toxins but Do Not Contribute to Differences in the Affinity of the A1 Subunits for the Ribosome.
    Basu D; Kahn JN; Li XP; Tumer NE
    Infect Immun; 2016 Dec; 84(12):3290-3301. PubMed ID: 27600507
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ricin uses arginine 235 as an anchor residue to bind to P-proteins of the ribosomal stalk.
    Zhou Y; Li XP; Chen BY; Tumer NE
    Sci Rep; 2017 Feb; 7():42912. PubMed ID: 28230053
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a quantitative RT-PCR assay to examine the kinetics of ribosome depurination by ribosome inactivating proteins using Saccharomyces cerevisiae as a model.
    Pierce M; Kahn JN; Chiou J; Tumer NE
    RNA; 2011 Jan; 17(1):201-10. PubMed ID: 21098653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeting ricin to the ribosome.
    May KL; Yan Q; Tumer NE
    Toxicon; 2013 Jul; 69():143-51. PubMed ID: 23454625
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ribosome depurination by ricin leads to inhibition of endoplasmic reticulum stress-induced
    Pierce M; Vengsarkar D; McLaughlin JE; Kahn JN; Tumer NE
    J Biol Chem; 2019 Nov; 294(47):17848-17862. PubMed ID: 31624149
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of small-molecule inhibitors of ricin and shiga toxin using a cell-based high-throughput screen.
    Wahome PG; Bai Y; Neal LM; Robertus JD; Mantis NJ
    Toxicon; 2010 Sep; 56(3):313-23. PubMed ID: 20350563
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conformational change in ricin toxin A-Chain: A critical factor for inhibitor binding to the secondary pocket.
    Goto M; Higashi S; Ohba T; Kawata R; Nagatsu K; Suzuki S; Anslyn EV; Saito R
    Biochem Biophys Res Commun; 2022 Oct; 627():1-4. PubMed ID: 35998389
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure-based design of ricin inhibitors.
    Jasheway K; Pruet J; Anslyn EV; Robertus JD
    Toxins (Basel); 2011 Oct; 3(10):1233-48. PubMed ID: 22069693
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vinyldeoxyadenosine in a sarcin-ricin RNA loop and its binding to ricin toxin a-chain.
    Roday S; Saen-oon S; Schramm VL
    Biochemistry; 2007 May; 46(21):6169-82. PubMed ID: 17477546
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human ribosomal P1-P2 heterodimer represents an optimal docking site for ricin A chain with a prominent role for P1 C-terminus.
    Grela P; Li XP; Horbowicz P; Dźwierzyńska M; Tchórzewski M; Tumer NE
    Sci Rep; 2017 Jul; 7(1):5608. PubMed ID: 28717148
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shiga toxin 1 is more dependent on the P proteins of the ribosomal stalk for depurination activity than Shiga toxin 2.
    Chiou JC; Li XP; Remacha M; Ballesta JP; Tumer NE
    Int J Biochem Cell Biol; 2011 Dec; 43(12):1792-801. PubMed ID: 21907821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The A1 Subunit of Shiga Toxin 2 Has Higher Affinity for Ribosomes and Higher Catalytic Activity than the A1 Subunit of Shiga Toxin 1.
    Basu D; Li XP; Kahn JN; May KL; Kahn PC; Tumer NE
    Infect Immun; 2016 Jan; 84(1):149-61. PubMed ID: 26483409
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fragment-based identification of determinants of conformational and spectroscopic change at the ricin active site.
    Carra JH; McHugh CA; Mulligan S; Machiesky LM; Soares AS; Millard CB
    BMC Struct Biol; 2007 Nov; 7():72. PubMed ID: 17986339
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Small-molecule inhibitors of ricin and Shiga toxins.
    Wahome PG; Robertus JD; Mantis NJ
    Curr Top Microbiol Immunol; 2012; 357():179-207. PubMed ID: 22006183
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cryo-EM structure of Shiga toxin 2 in complex with the native ribosomal P-stalk reveals residues involved in the binding interaction.
    Kulczyk AW; Sorzano COS; Grela P; Tchórzewski M; Tumer NE; Li XP
    J Biol Chem; 2023 Jan; 299(1):102795. PubMed ID: 36528064
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The acidic ribosomal stalk proteins are not required for the highly specific inactivation exerted by α-sarcin of the eukaryotic ribosome.
    Olombrada M; Rodríguez-Mateos M; Prieto D; Pla J; Remacha M; Martínez-del-Pozo A; Gavilanes JG; Ballesta JP; García-Ortega L
    Biochemistry; 2014 Mar; 53(10):1545-7. PubMed ID: 24568582
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ZAK: a MAP3Kinase that transduces Shiga toxin- and ricin-induced proinflammatory cytokine expression.
    Jandhyala DM; Ahluwalia A; Obrig T; Thorpe CM
    Cell Microbiol; 2008 Jul; 10(7):1468-77. PubMed ID: 18331592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real-time kinetic analyses of the interaction of ricin toxin A-chain with ribosomes prove a conformational change involved in complex formation.
    Honjo E; Watanabe K; Tsukamoto T
    J Biochem; 2002 Feb; 131(2):267-75. PubMed ID: 11820942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.