These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38340658)
1. PNPLA1 knockdown inhibits esterification of γ-linolenic acid to ceramide 1 in differentiated keratinocytes. Kim KP; Shin KO; Lee S; Yun J; Lee T; Cho Y Biochem Biophys Res Commun; 2024 Apr; 702():149618. PubMed ID: 38340658 [TBL] [Abstract][Full Text] [Related]
2. Mass Spectrometric Confirmation of γ-Linolenic Acid Ester-Linked Ceramide 1 in the Epidermis of Borage Oil Fed Guinea Pigs. Shin KO; Kim K; Jeon S; Seo CH; Lee YM; Cho Y Lipids; 2015 Oct; 50(10):1051-6. PubMed ID: 26233818 [TBL] [Abstract][Full Text] [Related]
3. Borage Oil Enhances Lamellar Body Content and Alters Fatty Acid Composition of Epidermal Ceramides in Essential Fatty Acid-Deficient Guinea Pigs. Kim KP; Shin KO; Park K; Cho Y Lipids; 2021 May; 56(3):345-353. PubMed ID: 33378788 [TBL] [Abstract][Full Text] [Related]
4. Recombinant PNPLA1 catalyzes the synthesis of acylceramides and acyl acids with selective incorporation of linoleic acid. Meyer JM; Boeglin WE; Brash AR J Lipid Res; 2023 Jun; 64(6):100379. PubMed ID: 37087101 [TBL] [Abstract][Full Text] [Related]
5. PNPLA1 has a crucial role in skin barrier function by directing acylceramide biosynthesis. Hirabayashi T; Anjo T; Kaneko A; Senoo Y; Shibata A; Takama H; Yokoyama K; Nishito Y; Ono T; Taya C; Muramatsu K; Fukami K; Muñoz-Garcia A; Brash AR; Ikeda K; Arita M; Akiyama M; Murakami M Nat Commun; 2017 Mar; 8():14609. PubMed ID: 28248300 [TBL] [Abstract][Full Text] [Related]
6. The role of PNPLA1 in ω-O-acylceramide synthesis and skin barrier function. Hirabayashi T; Murakami M; Kihara A Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Jun; 1864(6):869-879. PubMed ID: 30290227 [TBL] [Abstract][Full Text] [Related]
7. ω-O-Acylceramides but not ω-hydroxy ceramides are required for healthy lamellar phase architecture of skin barrier lipids. Opálka L; Meyer JM; Ondrejčeková V; Svatošová L; Radner FPW; Vávrová K J Lipid Res; 2022 Jun; 63(6):100226. PubMed ID: 35568253 [TBL] [Abstract][Full Text] [Related]
9. Linoleate-enriched diet increases both linoleic acid esterified to omega hydroxy very long chain fatty acids and free ceramides of canine stratum corneum without effect on protein-bound ceramides and skin barrier function. Popa I; Watson AL; Solgadi A; Butowski C; Allaway D; Portoukalian J Arch Dermatol Res; 2018 Sep; 310(7):579-589. PubMed ID: 29995261 [TBL] [Abstract][Full Text] [Related]
10. Two C18 hydroxy-cyclohexenone fatty acids from mammalian epidermis: Potential relation to 12R-lipoxygenase and covalent binding of ceramides. Brash AR; Noguchi S; Boeglin WE; Calcutt MW; Stec DF; Schneider C; Meyer JM J Biol Chem; 2023 Jun; 299(6):104739. PubMed ID: 37086788 [TBL] [Abstract][Full Text] [Related]
11. Overexpression and hyperactivity of breast cancer-associated fatty acid synthase (oncogenic antigen-519) is insensitive to normal arachidonic fatty acid-induced suppression in lipogenic tissues but it is selectively inhibited by tumoricidal alpha-linolenic and gamma-linolenic fatty acids: a novel mechanism by which dietary fat can alter mammary tumorigenesis. Menendez JA; Ropero S; Mehmi I; Atlas E; Colomer R; Lupu R Int J Oncol; 2004 Jun; 24(6):1369-83. PubMed ID: 15138577 [TBL] [Abstract][Full Text] [Related]
12. Different effects of γ-linolenic acid (GLA) supplementation on plasma and red blood cell phospholipid fatty acid composition and calcium oxalate kidney stone risk factors in healthy subjects from two race groups with different risk profiles pose questions about the GLA-arachidonic acid-oxaluria metabolic pathway: pilot study. Rodgers AL; Jappie-Mahomed D; van Jaarsveld PJ Urolithiasis; 2018 Apr; 46(2):137-147. PubMed ID: 28623397 [TBL] [Abstract][Full Text] [Related]
14. Novel Pathogenic Mutation of Li H; Qian LJ; Xu N; Huang L; Qiao LX Chin Med Sci J; 2022 Dec; 37(4):349-352. PubMed ID: 36647593 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of fatty acid synthase-dependent neoplastic lipogenesis as the mechanism of gamma-linolenic acid-induced toxicity to tumor cells: an extension to Nwankwo's hypothesis. Menendez JA; Colomer R; Lupu R Med Hypotheses; 2005; 64(2):337-41. PubMed ID: 15607568 [TBL] [Abstract][Full Text] [Related]
16. Stable analogs of 13‑hydroxy-9,10-trans-epoxy-(11E)-octadecenoate (13,9-HEL), an oxidized derivative of linoleic acid implicated in the epidermal skin barrier. Keyes GS; Maiden K; Ramsden CE Prostaglandins Leukot Essent Fatty Acids; 2021 Nov; 174():102357. PubMed ID: 34749189 [TBL] [Abstract][Full Text] [Related]
17. 4,8-Sphingadienine and 4-hydroxy-8-sphingenine activate ceramide production in the skin. Shirakura Y; Kikuchi K; Matsumura K; Mukai K; Mitsutake S; Igarashi Y Lipids Health Dis; 2012 Aug; 11():108. PubMed ID: 22937840 [TBL] [Abstract][Full Text] [Related]
18. High accumulation of γ-linolenic acid and Stearidonic acid in transgenic Perilla (Perilla frutescens var. frutescens) seeds. Lee KR; Kim KH; Kim JB; Hong SB; Jeon I; Kim HU; Lee MH; Kim JK BMC Plant Biol; 2019 Apr; 19(1):120. PubMed ID: 30935415 [TBL] [Abstract][Full Text] [Related]
19. [Elucidation of the Synthetic Mechanism of Acylceramide, an Essential Lipid for Skin Barrier Function]. Ohno Y Yakugaku Zasshi; 2017; 137(10):1201-1208. PubMed ID: 28966260 [TBL] [Abstract][Full Text] [Related]