These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38340729)

  • 1. Accurate top protein variant discovery via low-N pick-and-validate machine learning.
    Chu HY; Fong JHC; Thean DGL; Zhou P; Fung FKC; Huang Y; Wong ASL
    Cell Syst; 2024 Feb; 15(2):193-203.e6. PubMed ID: 38340729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities.
    Thean DGL; Chu HY; Fong JHC; Chan BKC; Zhou P; Kwok CCS; Chan YM; Mak SYL; Choi GCG; Ho JWK; Zheng Z; Wong ASL
    Nat Commun; 2022 Apr; 13(1):2219. PubMed ID: 35468907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Informed training set design enables efficient machine learning-assisted directed protein evolution.
    Wittmann BJ; Yue Y; Arnold FH
    Cell Syst; 2021 Nov; 12(11):1026-1045.e7. PubMed ID: 34416172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning protein fitness landscapes with deep mutational scanning data from multiple sources.
    Chen L; Zhang Z; Li Z; Li R; Huo R; Chen L; Wang D; Luo X; Chen K; Liao C; Zheng M
    Cell Syst; 2023 Aug; 14(8):706-721.e5. PubMed ID: 37591206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A top variant identification pipeline for protein engineering.
    Chen H; Lu Z; Ma L
    Cell Syst; 2024 Feb; 15(2):105-106. PubMed ID: 38387439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive machine learning for protein engineering.
    Hie BL; Yang KK
    Curr Opin Struct Biol; 2022 Feb; 72():145-152. PubMed ID: 34896756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeCOIL: Optimization of Degenerate Codon Libraries for Machine Learning-Assisted Protein Engineering.
    Yang J; Ducharme J; Johnston KE; Li FZ; Yue Y; Arnold FH
    ACS Synth Biol; 2023 Aug; 12(8):2444-2454. PubMed ID: 37524064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combinatorial mutagenesis en masse optimizes the genome editing activities of SpCas9.
    Choi GCG; Zhou P; Yuen CTL; Chan BKC; Xu F; Bao S; Chu HY; Thean D; Tan K; Wong KH; Zheng Z; Wong ASL
    Nat Methods; 2019 Aug; 16(8):722-730. PubMed ID: 31308554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: a review.
    Sherkatghanad Z; Abdar M; Charlier J; Makarenkov V
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37080758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning-assisted directed protein evolution with combinatorial libraries.
    Wu Z; Kan SBJ; Lewis RD; Wittmann BJ; Arnold FH
    Proc Natl Acad Sci U S A; 2019 Apr; 116(18):8852-8858. PubMed ID: 30979809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepCRISTL: deep transfer learning to predict CRISPR/Cas9 functional and endogenous on-target editing efficiency.
    Elkayam S; Orenstein Y
    Bioinformatics; 2022 Jun; 38(Suppl 1):i161-i168. PubMed ID: 35758815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-N protein engineering with data-efficient deep learning.
    Biswas S; Khimulya G; Alley EC; Esvelt KM; Church GM
    Nat Methods; 2021 Apr; 18(4):389-396. PubMed ID: 33828272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Application of machine learning in the CRISPR/Cas9 system].
    Zhang GS; Yang Y; Zhang LM; Dai XH
    Yi Chuan; 2018 Sep; 40(9):704-723. PubMed ID: 30369475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facilitating Machine Learning-Guided Protein Engineering with Smart Library Design and Massively Parallel Assays.
    Chu HY; Wong ASL
    Adv Genet (Hoboken); 2021 Dec; 2(4):2100038. PubMed ID: 36619853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting mutant outcome by combining deep mutational scanning and machine learning.
    Sarfati H; Naftaly S; Papo N; Keasar C
    Proteins; 2022 Jan; 90(1):45-57. PubMed ID: 34293212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering proteinase K using machine learning and synthetic genes.
    Liao J; Warmuth MK; Govindarajan S; Ness JE; Wang RP; Gustafsson C; Minshull J
    BMC Biotechnol; 2007 Mar; 7():16. PubMed ID: 17386103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive prediction of robust synthetic lethality between paralog pairs in cancer cell lines.
    De Kegel B; Quinn N; Thompson NA; Adams DJ; Ryan CJ
    Cell Syst; 2021 Dec; 12(12):1144-1159.e6. PubMed ID: 34529928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BoostMEC: predicting CRISPR-Cas9 cleavage efficiency through boosting models.
    Zarate OA; Yang Y; Wang X; Wang JP
    BMC Bioinformatics; 2022 Oct; 23(1):446. PubMed ID: 36289480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel engineering and activity profiling of a base editor system.
    Fong JHC; Chu HY; Zhou P; Wong ASL
    Cell Syst; 2023 May; 14(5):392-403.e4. PubMed ID: 37164010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.