These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38340833)

  • 1. Recreational hazard: Vegetation and host habitat use correlate with changes in tick-borne disease hazard at infrastructure within forest stands.
    Van Gestel M; Heylen D; Verheyen K; Fonville M; Sprong H; Matthysen E
    Sci Total Environ; 2024 Apr; 919():170749. PubMed ID: 38340833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of vertebrate communities on Ixodes ricinus-borne disease risk in forest areas.
    Takumi K; Sprong H; Hofmeester TR
    Parasit Vectors; 2019 Sep; 12(1):434. PubMed ID: 31492171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonal Patterns in the Prevalence and Diversity of Tick-Borne Borrelia burgdorferi Sensu Lato, Anaplasma phagocytophilum and Rickettsia spp. in an Urban Temperate Forest in South Western Slovakia.
    Chvostáč M; Špitalská E; Václav R; Vaculová T; Minichová L; Derdáková M
    Int J Environ Res Public Health; 2018 May; 15(5):. PubMed ID: 29762516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecological factors characterizing the prevalence of bacterial tick-borne pathogens in Ixodes ricinus ticks in pastures and woodlands.
    Halos L; Bord S; Cotté V; Gasqui P; Abrial D; Barnouin J; Boulouis HJ; Vayssier-Taussat M; Vourc'h G
    Appl Environ Microbiol; 2010 Jul; 76(13):4413-20. PubMed ID: 20453131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping human risk of infection with Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis, in a periurban forest in France.
    Vourc'h G; Abrial D; Bord S; Jacquot M; Masséglia S; Poux V; Pisanu B; Bailly X; Chapuis JL
    Ticks Tick Borne Dis; 2016 Jul; 7(5):644-652. PubMed ID: 26897396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of rodent density on tick and tick-borne pathogen populations: consequences for infectious disease risk.
    Krawczyk AI; van Duijvendijk GLA; Swart A; Heylen D; Jaarsma RI; Jacobs FHH; Fonville M; Sprong H; Takken W
    Parasit Vectors; 2020 Jan; 13(1):34. PubMed ID: 31959217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melting pot of tick-borne zoonoses: the European hedgehog contributes to the maintenance of various tick-borne diseases in natural cycles urban and suburban areas.
    Jahfari S; Ruyts SC; Frazer-Mendelewska E; Jaarsma R; Verheyen K; Sprong H
    Parasit Vectors; 2017 Mar; 10(1):134. PubMed ID: 28270232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of local environmental factors in southwestern Poland on the abundance of Ixodes ricinus and prevalence of infection with Borrelia burgdorferi s.l. and B. miyamotoi.
    Dyczko D; Kiewra D; Kolanek A; Błażej P
    Parasitol Res; 2022 Jun; 121(6):1575-1585. PubMed ID: 35347426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prevalence of Borrelia miyamotoi and Borrelia burgdorferi sensu lato in questing ticks from a recreational coniferous forest of East Saxony, Germany.
    Szekeres S; Lügner J; Fingerle V; Margos G; Földvári G
    Ticks Tick Borne Dis; 2017 Oct; 8(6):922-927. PubMed ID: 28843481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiflora rose invasion amplifies prevalence of Lyme disease pathogen, but not necessarily Lyme disease risk.
    Adalsteinsson SA; Shriver WG; Hojgaard A; Bowman JL; Brisson D; D'Amico V; Buler JJ
    Parasit Vectors; 2018 Jan; 11(1):54. PubMed ID: 29361971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Questing abundance of adult taiga ticks Ixodes persulcatus and their Borrelia prevalence at the north-western part of their distribution.
    Pakanen VM; Sormunen JJ; Sippola E; Blomqvist D; Kallio ER
    Parasit Vectors; 2020 Jul; 13(1):384. PubMed ID: 32727555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of mustelids in the life-cycle of ixodid ticks and transmission cycles of four tick-borne pathogens.
    Hofmeester TR; Krawczyk AI; van Leeuwen AD; Fonville M; Montizaan MGE; van den Berge K; Gouwy J; Ruyts SC; Verheyen K; Sprong H
    Parasit Vectors; 2018 Nov; 11(1):600. PubMed ID: 30458847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular identification of tick-borne pathogens (Rickettsia spp., Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Coxiella burnetii and piroplasms) in questing and feeding hard ticks from North-Western Spain.
    Del Cerro A; Oleaga A; Somoano A; Barandika JF; García-Pérez AL; Espí A
    Ticks Tick Borne Dis; 2022 Jul; 13(4):101961. PubMed ID: 35490548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental evidence for opposing effects of high deer density on tick-borne pathogen prevalence and hazard.
    Gandy S; Kilbride E; Biek R; Millins C; Gilbert L
    Parasit Vectors; 2021 Sep; 14(1):509. PubMed ID: 34593023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Year-to-year variation in the density of Ixodes ricinus ticks and the prevalence of the rodent-associated human pathogens Borrelia afzelii and B. miyamotoi in different forest types.
    Ruyts SC; Tack W; Ampoorter E; Coipan EC; Matthysen E; Heylen D; Sprong H; Verheyen K
    Ticks Tick Borne Dis; 2018 Feb; 9(2):141-145. PubMed ID: 28869190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of cattle grazing on Ixodes ricinus-borne disease risk in forest areas of the Netherlands.
    Sprong H; Moonen S; van Wieren SE; Hofmeester TR
    Ticks Tick Borne Dis; 2020 Mar; 11(2):101355. PubMed ID: 31837919
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Raileanu C; Moutailler S; Pavel I; Porea D; Mihalca AD; Savuta G; Vayssier-Taussat M
    Front Cell Infect Microbiol; 2017; 7():36. PubMed ID: 28261565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cascading effects of predator activity on tick-borne disease risk.
    Hofmeester TR; Jansen PA; Wijnen HJ; Coipan EC; Fonville M; Prins HHT; Sprong H; van Wieren SE
    Proc Biol Sci; 2017 Jul; 284(1859):. PubMed ID: 28724731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prevalence of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum in questing Ixodes ricinus ticks in relation to the density of wild cervids.
    Rosef O; Paulauskas A; Radzijevskaja J
    Acta Vet Scand; 2009 Nov; 51(1):47. PubMed ID: 19943915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the influence of host community composition on the outbreak potential of Anaplasma phagocytophilum and Borrelia burgdorferi s.l.
    Fabri ND; Heesterbeek H; Cromsigt JPGM; Ecke F; Sprong H; Nijhuis L; Hofmeester TR; Hartemink N
    Ticks Tick Borne Dis; 2024 Jan; 15(1):102275. PubMed ID: 37922668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.