These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 38340849)
1. Predicting co-liquefaction bio-oil of sewage sludge and algal biomass via machine learning with experimental optimization: Focus on yield, nitrogen content, and energy recovery rate. Liu T; Zhang W; Xu D; Leng L; Li H; Wang S; He Y Sci Total Environ; 2024 Apr; 920():170779. PubMed ID: 38340849 [TBL] [Abstract][Full Text] [Related]
2. Machine learning prediction and optimization of bio-oil production from hydrothermal liquefaction of algae. Zhang W; Li J; Liu T; Leng S; Yang L; Peng H; Jiang S; Zhou W; Leng L; Li H Bioresour Technol; 2021 Dec; 342():126011. PubMed ID: 34852447 [TBL] [Abstract][Full Text] [Related]
3. Machine learning prediction of nitrogen heterocycles in bio-oil produced from hydrothermal liquefaction of biomass. Leng L; Zhang W; Chen Q; Zhou J; Peng H; Zhan H; Li H Bioresour Technol; 2022 Oct; 362():127791. PubMed ID: 35985462 [TBL] [Abstract][Full Text] [Related]
4. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Leng L; Li J; Yuan X; Li J; Han P; Hong Y; Wei F; Zhou W Bioresour Technol; 2018 Mar; 251():49-56. PubMed ID: 29268150 [TBL] [Abstract][Full Text] [Related]
5. Enrichment of bio-oil after hydrothermal liquefaction (HTL) of microalgae C. vulgaris grown in wastewater: Bio-char and post HTL wastewater utilization studies. Arun J; Varshini P; Prithvinath PK; Priyadarshini V; Gopinath KP Bioresour Technol; 2018 Aug; 261():182-187. PubMed ID: 29660659 [TBL] [Abstract][Full Text] [Related]
6. Bio-oil production from hydrothermal liquefaction of Pteris vittata L.: Effects of operating temperatures and energy recovery. Chen J Bioresour Technol; 2018 Oct; 265():320-327. PubMed ID: 29909362 [TBL] [Abstract][Full Text] [Related]
8. Research progress and hot spots of hydrothermal liquefaction for bio-oil production based on bibliometric analysis. Yang J; Hong C; Xing Y; Zheng Z; Li Z; Zhao X; Qi C Environ Sci Pollut Res Int; 2021 Feb; 28(7):7621-7635. PubMed ID: 33398733 [TBL] [Abstract][Full Text] [Related]
9. Bio oil production from microalgae via hydrothermal liquefaction technology under subcritical water conditions. Kiran Kumar P; Vijaya Krishna S; Verma K; Pooja K; Bhagawan D; Srilatha K; Himabindu V J Microbiol Methods; 2018 Oct; 153():108-117. PubMed ID: 30248442 [TBL] [Abstract][Full Text] [Related]
10. Effect of algae (Scenedesmus obliquus) biomass pre-treatment on bio-oil production in hydrothermal liquefaction (HTL): Biochar and aqueous phase utilization studies. Mahima J; Sundaresh RK; Gopinath KP; Rajan PSS; Arun J; Kim SH; Pugazhendhi A Sci Total Environ; 2021 Jul; 778():146262. PubMed ID: 33714809 [TBL] [Abstract][Full Text] [Related]
11. Effects of aqueous phase circulation and catalysts on hydrothermal liquefaction (HTL) of penicillin residue (PR): Characteristics of the aqueous phase, solid residue and bio oil. Hong C; Wang Z; Si Y; Li Z; Xing Y; Hu J; Li Y Sci Total Environ; 2021 Jul; 776():145596. PubMed ID: 33652310 [TBL] [Abstract][Full Text] [Related]
12. Catalytic upgrading of bio-oil produced from hydrothermal liquefaction of Nannochloropsis sp. Shakya R; Adhikari S; Mahadevan R; Hassan EB; Dempster TA Bioresour Technol; 2018 Mar; 252():28-36. PubMed ID: 29306126 [TBL] [Abstract][Full Text] [Related]
13. Hydrothermal liquefaction of Prosopis juliflora biomass for the production of ferulic acid and bio-oil. Arun J; Gopinath KP; Sivaramakrishnan R; Shyam S; Mayuri N; Manasa S; Pugazhendhi A Bioresour Technol; 2021 Jan; 319():124116. PubMed ID: 32957046 [TBL] [Abstract][Full Text] [Related]
14. Study on hydrothermal liquefaction of antibiotic residues for bio-oil in ethanol-water system. Yang J; Hong C; Li Z; Xing Y; Zhao X Waste Manag; 2021 Feb; 120():164-174. PubMed ID: 33307361 [TBL] [Abstract][Full Text] [Related]
15. Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil. Chen WT; Zhang Y; Zhang J; Yu G; Schideman LC; Zhang P; Minarick M Bioresour Technol; 2014; 152():130-9. PubMed ID: 24287452 [TBL] [Abstract][Full Text] [Related]
16. Automated machine learning-aided prediction and interpretation of gaseous by-products from the hydrothermal liquefaction of biomass. Zhang W; Ai Z; Chen Q; Chen J; Xu D; Cao J; Kapusta K; Peng H; Leng L; Li H Sci Total Environ; 2024 Oct; 945():173939. PubMed ID: 38908600 [TBL] [Abstract][Full Text] [Related]
17. Co-liquefaction of Prosopis juliflora with polyolefin waste for production of high grade liquid hydrocarbons. Arun J; Gopinath KP; SundarRajan P; JoselynMonica M; Felix V Bioresour Technol; 2019 Feb; 274():296-301. PubMed ID: 30529335 [TBL] [Abstract][Full Text] [Related]
18. Primary sewage sludge filtration using biomass filter aids and subsequent hydrothermal co-liquefaction. Biller P; Johannsen I; Dos Passos JS; Ottosen LDM Water Res; 2018 Mar; 130():58-68. PubMed ID: 29197757 [TBL] [Abstract][Full Text] [Related]
19. Study on the bio-oil characterization and heavy metals distribution during the aqueous phase recycling in the hydrothermal liquefaction of As-enriched Pteris vittata L. Jiang H; Fan L; Cai C; Hu Y; Zhao F; Ruan R; Yang W Bioresour Technol; 2020 Dec; 317():124031. PubMed ID: 32871332 [TBL] [Abstract][Full Text] [Related]
20. Low-temperature hydrothermal liquefaction of pomelo peel for production of 5-hydroxymethylfurfural-rich bio-oil using ionic liquid loaded ZSM-5. Wei Y; Fakudze S; Zhang Y; Song M; Xue T; Xie R; Chen J Bioresour Technol; 2022 May; 352():127050. PubMed ID: 35351566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]