These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 38340864)
1. Cu transport and complexation by the marine diatom Phaeodactylum tricornutum: Implications for trace metal complexation kinetics in the surface ocean. González-Dávila M; Maldonado MT; González AG; Guo J; González-Santana D; Martel A; Santana-Casiano JM Sci Total Environ; 2024 Apr; 919():170752. PubMed ID: 38340864 [TBL] [Abstract][Full Text] [Related]
2. Exudates of different marine algae promote growth and mediate trace metal binding in Phaeodactylum tricornutum. Vasconcelos MT; Leal MF Mar Environ Res; 2008 Dec; 66(5):499-507. PubMed ID: 18829098 [TBL] [Abstract][Full Text] [Related]
3. Effects and mechanisms of glyphosate as phosphorus nutrient on element stoichiometry and metabolism in the diatom Wang C; Li J; Li S; Lin S Appl Environ Microbiol; 2024 Feb; 90(2):e0213123. PubMed ID: 38265214 [TBL] [Abstract][Full Text] [Related]
4. Impacts of Zn and Cu enrichment under ocean acidification scenario on a phytoplankton community from tropical upwelling system. Sharma D; Biswas H; Silori S; Bandyopadhyay D; Shaik AU; Cardinal D; Mandeng-Yogo M; Ray D Mar Environ Res; 2020 Mar; 155():104880. PubMed ID: 32072984 [TBL] [Abstract][Full Text] [Related]
5. Interactions of algal ligands, metal complexation and availability, and cell responses of the diatom Ditylum brightwellii with a gradual increase in copper. Rijstenbil JW; Gerringa LJ Aquat Toxicol; 2002 Jan; 56(2):115-31. PubMed ID: 11755700 [TBL] [Abstract][Full Text] [Related]
6. Functional CTR-type Cu(I) transporters in an oceanic diatom. Kong L; Price NM Environ Microbiol; 2019 Jan; 21(1):98-110. PubMed ID: 30255564 [TBL] [Abstract][Full Text] [Related]
7. Phytate as a Phosphorus Nutrient with Impacts on Iron Stress-Related Gene Expression for Phytoplankton: Insights from the Diatom Li J; Zhang K; Lin X; Li L; Lin S Appl Environ Microbiol; 2022 Jan; 88(2):e0209721. PubMed ID: 34757820 [TBL] [Abstract][Full Text] [Related]
8. A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake. Morrissey J; Sutak R; Paz-Yepes J; Tanaka A; Moustafa A; Veluchamy A; Thomas Y; Botebol H; Bouget FY; McQuaid JB; Tirichine L; Allen AE; Lesuisse E; Bowler C Curr Biol; 2015 Feb; 25(3):364-371. PubMed ID: 25557662 [TBL] [Abstract][Full Text] [Related]
9. Adaptation of a marine diatom to ocean acidification increases its sensitivity to toxic metal exposure. Dai X; Zhang J; Zeng X; Huang J; Lin J; Lu Y; Liang S; Ye M; Xiao M; Zhao J; Overmans S; Xia J; Jin P Mar Pollut Bull; 2022 Oct; 183():114056. PubMed ID: 36058179 [TBL] [Abstract][Full Text] [Related]
10. Evaluating trace element bioavailability and potential transfer into marine food chains using immobilised diatom model species Phaeodactylum tricornutum, on King George Island, Antarctica. Cabrita MT; Padeiro A; Amaro E; Dos Santos MC; Leppe M; Verkulich S; Hughes KA; Peter HU; Canário J Mar Pollut Bull; 2017 Aug; 121(1-2):192-200. PubMed ID: 28601436 [TBL] [Abstract][Full Text] [Related]
11. Seasonal dynamics in microbial trace metals transporters during phytoplankton blooms in the Southern Ocean. Kong Y; Zhang R; Blain S; Obernosterer I Environ Microbiol; 2024 Oct; 26(10):e16695. PubMed ID: 39367538 [TBL] [Abstract][Full Text] [Related]
12. SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater. Nakajima K; Tanaka A; Matsuda Y Proc Natl Acad Sci U S A; 2013 Jan; 110(5):1767-72. PubMed ID: 23297242 [TBL] [Abstract][Full Text] [Related]
13. Interactive effects of ocean acidification and nitrogen-limitation on the diatom Phaeodactylum tricornutum. Li W; Gao K; Beardall J PLoS One; 2012; 7(12):e51590. PubMed ID: 23236517 [TBL] [Abstract][Full Text] [Related]
14. Distribution of copper-binding ligands in Fram Strait and influences from the Greenland Shelf (GEOTRACES GN05). Arnone V; Santana-Casiano JM; González-Dávila M; Sarthou G; Krisch S; Lodeiro P; Achterberg EP; González AG Sci Total Environ; 2024 Jan; 909():168162. PubMed ID: 37952666 [TBL] [Abstract][Full Text] [Related]
15. Effects of nitrogen and phosphorus availability on cadmium tolerance in the marine diatom Phaeodactylum tricornutum. Ma J; Chen F; Zhou B; Zhang Z; Pan K Sci Total Environ; 2022 Sep; 838(Pt 4):156615. PubMed ID: 35691352 [TBL] [Abstract][Full Text] [Related]
16. The trace metal composition of marine phytoplankton. Twining BS; Baines SB Ann Rev Mar Sci; 2013; 5():191-215. PubMed ID: 22809181 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the response of three microalgae species exposed to elutriates of estuarine sediments based on growth and chemical speciation. Mucha AP; Leal MF; Bordalo AA; Vasconcelos MT Environ Toxicol Chem; 2003 Mar; 22(3):576-85. PubMed ID: 12627645 [TBL] [Abstract][Full Text] [Related]
18. Time-averaged copper concentrations from continuous exposures predicts pulsed exposure toxicity to the marine diatom, Phaeodactylum tricornutum: Importance of uptake and elimination. Angel BM; Simpson SL; Chariton AA; Stauber JL; Jolley DF Aquat Toxicol; 2015 Jul; 164():1-9. PubMed ID: 25911575 [TBL] [Abstract][Full Text] [Related]
19. Metal binding properties of the EPS produced by Halomonas sp. TG39 and its potential in enhancing trace element bioavailability to eukaryotic phytoplankton. Gutierrez T; Biller DV; Shimmield T; Green DH Biometals; 2012 Dec; 25(6):1185-94. PubMed ID: 22960806 [TBL] [Abstract][Full Text] [Related]
20. Insights into the bioavailability of oceanic dissolved Fe from phytoplankton uptake kinetics. Shaked Y; Buck KN; Mellett T; Maldonado MT ISME J; 2020 May; 14(5):1182-1193. PubMed ID: 32024947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]