These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 38340942)
1. Study on cellulose nanofibrils/copolymacrolactone based nano-composites with hydrophobic behaviour, self-healing ability and antioxidant activity. Chiriac AP; Ghilan A; Croitoriu A; Serban A; Bercea M; Stoleru E; Nita LE; Doroftei F; Stoica I; Bargan A; Rusu AG; Chiriac VM Int J Biol Macromol; 2024 Mar; 262(Pt 1):130034. PubMed ID: 38340942 [TBL] [Abstract][Full Text] [Related]
2. Preparation of an Antioxidant Assembly Based on a Copolymacrolactone Structure and Erythritol following an Eco-Friendly Strategy. Chiriac AP; Ghilan A; Serban AM; Macsim AM; Bargan A; Doroftei F; Chiriac VM; Nita LE; Rusu AG; Sandu AI Antioxidants (Basel); 2022 Dec; 11(12):. PubMed ID: 36552679 [TBL] [Abstract][Full Text] [Related]
3. Surface-Initiated Controlled Radical Polymerization Approach To Enhance Nanocomposite Integration of Cellulose Nanofibrils. Navarro JRG; Edlund U Biomacromolecules; 2017 Jun; 18(6):1947-1955. PubMed ID: 28482654 [TBL] [Abstract][Full Text] [Related]
4. Fluorine-Free Oil Absorbents Made from Cellulose Nanofibril Aerogels. Mulyadi A; Zhang Z; Deng Y ACS Appl Mater Interfaces; 2016 Feb; 8(4):2732-40. PubMed ID: 26761377 [TBL] [Abstract][Full Text] [Related]
5. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils. Dong H; Sliozberg YR; Snyder JF; Steele J; Chantawansri TL; Orlicki JA; Walck SD; Reiner RS; Rudie AW ACS Appl Mater Interfaces; 2015 Nov; 7(45):25464-72. PubMed ID: 26513136 [TBL] [Abstract][Full Text] [Related]
6. All-Aqueous SI-ARGET ATRP from Cellulose Nanofibrils Using Hydrophilic and Hydrophobic Monomers. Kaldéus T; Telaretti Leggieri MR; Cobo Sanchez C; Malmström E Biomacromolecules; 2019 May; 20(5):1937-1943. PubMed ID: 30889349 [TBL] [Abstract][Full Text] [Related]
7. Double emulsions for the compatibilization of hydrophilic nanocellulose with non-polar polymers and validation in the synthesis of composite fibers. Carrillo CA; Nypelö T; Rojas OJ Soft Matter; 2016 Mar; 12(10):2721-8. PubMed ID: 26876673 [TBL] [Abstract][Full Text] [Related]
8. Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide. Trovatti E; Tang H; Hajian A; Meng Q; Gandini A; Berglund LA; Zhou Q Carbohydr Polym; 2018 Feb; 181():256-263. PubMed ID: 29253970 [TBL] [Abstract][Full Text] [Related]
9. Structure and Properties of Polylactic Acid Biocomposite Films Reinforced with Cellulose Nanofibrils. Wang Q; Ji C; Sun J; Zhu Q; Liu J Molecules; 2020 Jul; 25(14):. PubMed ID: 32708238 [TBL] [Abstract][Full Text] [Related]
10. Hydrophobic corn zein-modified cellulose nanofibril (CNF) films with antioxidant properties. LakshmiBalasubramaniam S; Tajvidi M; Skonberg D Food Chem; 2024 Nov; 458():140220. PubMed ID: 38943949 [TBL] [Abstract][Full Text] [Related]
11. Biodegradable cellulose I (II) nanofibrils/poly(vinyl alcohol) composite films with high mechanical properties, improved thermal stability and excellent transparency. Xing L; Hu C; Zhang W; Guan L; Gu J Int J Biol Macromol; 2020 Dec; 164():1766-1775. PubMed ID: 32763405 [TBL] [Abstract][Full Text] [Related]
12. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing. Ghanbari A; Tabarsa T; Ashori A; Shakeri A; Mashkour M Int J Biol Macromol; 2018 Jun; 112():442-447. PubMed ID: 29410268 [TBL] [Abstract][Full Text] [Related]
13. Hydrogels with Antioxidant Microparticles Systems Based on Hyaluronic Acid for Regenerative Wound Healing. Nacu I; Ghilan A; Rusu AG; Bercea M; Nita LE; Vereştiuc L; Chiriac AP Macromol Biosci; 2024 Oct; 24(10):e2400153. PubMed ID: 39101693 [TBL] [Abstract][Full Text] [Related]
14. In-situ polycondensate-coated cellulose nanofiber heterostructure for polylactic acid-based composites with superior mechanical and thermal properties. Wang Q; Chen X; Zeng S; Chen P; Xu Y; Nie W; Xia R; Zhou Y Int J Biol Macromol; 2023 Jun; 240():124515. PubMed ID: 37085066 [TBL] [Abstract][Full Text] [Related]
15. Biomimetic composite scaffolds based on surface modification of polydopamine on ultrasonication induced cellulose nanofibrils (CNF) adsorbing onto electrospun thermoplastic polyurethane (TPU) nanofibers. Cui Z; Lin J; Zhan C; Wu J; Shen S; Si J; Wang Q J Biomater Sci Polym Ed; 2020 Apr; 31(5):561-577. PubMed ID: 31920175 [TBL] [Abstract][Full Text] [Related]
16. Structure Optimization of Cellulose Nanofibers/Poly(Lactic Acid) Composites by the Sizing of AKD. Li L; Cao M; Li J; Wang C; Li S Polymers (Basel); 2021 Nov; 13(23):. PubMed ID: 34883622 [TBL] [Abstract][Full Text] [Related]
17. Hydrophobic modification of cellulose nanofibers by gallic acid and the application in pressure sensing. Li Z; Yan C; Xu W; Shang Y; Wu Q; Mehmood S; Wang F; Cheng C; Liu Q; Shao Z Int J Biol Macromol; 2024 Mar; 261(Pt 2):129770. PubMed ID: 38302028 [TBL] [Abstract][Full Text] [Related]
18. Cellulose-nanofiber-reinforced poly(lactic acid) composites prepared by a water-based approach. Wang T; Drzal LT ACS Appl Mater Interfaces; 2012 Oct; 4(10):5079-85. PubMed ID: 22991937 [TBL] [Abstract][Full Text] [Related]
19. Screening of preservatives and evaluation of sterilized cellulose nanofibers for toxicity studies. Sai T; Maru J; Obara S; Endoh S; Kajihara H; Fujita K J Occup Health; 2020 Jan; 62(1):e12176. PubMed ID: 33159502 [TBL] [Abstract][Full Text] [Related]
20. 3D Printable Hybrid Gel Made of Polymer Surface-Modified Cellulose Nanofibrils Prepared by Surface-Initiated Controlled Radical Polymerization (SI-SET-LRP) and Upconversion Luminescent Nanoparticles. Jiang X; Mietner JB; Harder C; Komban R; Chen S; Strelow C; Sazama U; Fröba M; Gimmler C; Müller-Buschbaum P; Roth SV; Navarro JRG ACS Appl Mater Interfaces; 2023 Feb; 15(4):5687-5700. PubMed ID: 36669131 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]