BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38340971)

  • 1. Improved image quality in contrast-enhanced 3D-T1 weighted sequence by compressed sensing-based deep-learning reconstruction for the evaluation of head and neck.
    Fujima N; Nakagawa J; Ikebe Y; Kameda H; Harada T; Shimizu Y; Tsushima N; Kano S; Homma A; Kwon J; Yoneyama M; Kudo K
    Magn Reson Imaging; 2024 May; 108():111-115. PubMed ID: 38340971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of image quality in diffusion-weighted imaging with model-based deep learning reconstruction for evaluations of the head and neck.
    Fujima N; Nakagawa J; Kameda H; Ikebe Y; Harada T; Shimizu Y; Tsushima N; Kano S; Homma A; Kwon J; Yoneyama M; Kudo K
    MAGMA; 2023 Nov; ():. PubMed ID: 37989922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid 3D breath-hold MR cholangiopancreatography using deep learning-constrained compressed sensing reconstruction.
    Zhang Y; Peng W; Xiao Y; Ming Y; Ma K; Hu S; Zeng W; Zeng L; Liang Z; Zhang X; Xia C; Li Z
    Eur Radiol; 2023 Apr; 33(4):2500-2509. PubMed ID: 36355200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined signal averaging and compressed sensing: impact on quality of contrast-enhanced fat-suppressed 3D turbo field-echo imaging for pharyngolaryngeal squamous cell carcinoma.
    Takumi K; Nagano H; Nakanosono R; Kumagae Y; Fukukura Y; Yoshiura T
    Neuroradiology; 2020 Oct; 62(10):1293-1299. PubMed ID: 32577772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a deep learning-based reconstruction method for denoising and image enhancement of shoulder MRI in patients with shoulder pain.
    Feuerriegel GC; Weiss K; Kronthaler S; Leonhardt Y; Neumann J; Wurm M; Lenhart NS; Makowski MR; Schwaiger BJ; Woertler K; Karampinos DC; Gersing AS
    Eur Radiol; 2023 Jul; 33(7):4875-4884. PubMed ID: 36806569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated single-shot T2-weighted fat-suppressed (FS) MRI of the liver with deep learning-based image reconstruction: qualitative and quantitative comparison of image quality with conventional T2-weighted FS sequence.
    Shanbhogue K; Tong A; Smereka P; Nickel D; Arberet S; Anthopolos R; Chandarana H
    Eur Radiol; 2021 Nov; 31(11):8447-8457. PubMed ID: 33961086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction of 3D knee MRI using deep learning and compressed sensing: a validation study on healthy volunteers.
    Dratsch T; Zäske C; Siedek F; Rauen P; Hokamp NG; Sonnabend K; Maintz D; Bratke G; Iuga A
    Eur Radiol Exp; 2024 Apr; 8(1):47. PubMed ID: 38616220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compressed Sensitivity Encoding Artificial Intelligence Accelerates Brain Metastasis Imaging by Optimizing Image Quality and Reducing Scan Time.
    Wang M; Ma Y; Li L; Pan X; Wen Y; Qiu Y; Guo D; Zhu Y; Lian J; Tong D
    AJNR Am J Neuroradiol; 2024 Apr; 45(4):444-452. PubMed ID: 38485196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compressed sensing with deep learning reconstruction: Improving capability of gadolinium-EOB-enhanced 3D T1WI.
    Nagata H; Ohno Y; Yoshikawa T; Yamamoto K; Shinohara M; Ikedo M; Yui M; Matsuyama T; Takahashi T; Bando S; Furuta M; Ueda T; Ozawa Y; Toyama H
    Magn Reson Imaging; 2024 May; 108():67-76. PubMed ID: 38309378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination Use of Compressed Sensing and Deep Learning for Shoulder Magnetic Resonance Imaging With Various Sequences.
    Shiraishi K; Nakaura T; Uetani H; Nagayama Y; Kidoh M; Kobayashi N; Morita K; Yamahita Y; Miyamoto T; Hirai T
    J Comput Assist Tomogr; 2023 Mar-Apr 01; 47(2):277-283. PubMed ID: 36944152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstruction of shoulder MRI using deep learning and compressed sensing: a validation study on healthy volunteers.
    Dratsch T; Siedek F; Zäske C; Sonnabend K; Rauen P; Terzis R; Hahnfeldt R; Maintz D; Persigehl T; Bratke G; Iuga A
    Eur Radiol Exp; 2023 Oct; 7(1):66. PubMed ID: 37880546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning-based reconstruction for acceleration of lumbar spine MRI: a prospective comparison with standard MRI.
    Yoo H; Yoo RE; Choi SH; Hwang I; Lee JY; Seo JY; Koh SY; Choi KS; Kang KM; Yun TJ
    Eur Radiol; 2023 Dec; 33(12):8656-8668. PubMed ID: 37498386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined Deep Learning-based Super-Resolution and Partial Fourier Reconstruction for Gradient Echo Sequences in Abdominal MRI at 3 Tesla: Shortening Breath-Hold Time and Improving Image Sharpness and Lesion Conspicuity.
    Almansour H; Herrmann J; Gassenmaier S; Lingg A; Nickel MD; Kannengiesser S; Arberet S; Othman AE; Afat S
    Acad Radiol; 2023 May; 30(5):863-872. PubMed ID: 35810067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep-learning-based image quality enhancement of CT-like MR imaging in patients with suspected traumatic shoulder injury.
    Feuerriegel GC; Weiss K; Tu Van A; Leonhardt Y; Neumann J; Gassert FT; Haas Y; Schwarz M; Makowski MR; Woertler K; Karampinos DC; Gersing AS
    Eur J Radiol; 2024 Jan; 170():111246. PubMed ID: 38056345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of Artificial Intelligence Constrained Compressed SENSE Accelerated 3D Isotropic T1 VISTA Sequence For Vessel Wall MR Imaging: Exploring the Potential of Higher Acceleration Factors Compared to Traditional Compressed SENSE.
    Ma Y; Wang M; Qiao Y; Wen Y; Zhu Y; Jiang K; Lian J; Tong D
    Acad Radiol; 2024 Apr; ():. PubMed ID: 38664146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of image quality of head and neck lesions between 3D gradient echo sequences with compressed sensing and the multi-slice spin echo sequence.
    Kami Y; Chikui T; Togao O; Ooga M; Yoshiura K
    Acta Radiol Open; 2020 Sep; 9(9):2058460120956644. PubMed ID: 35140985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-based Deep Learning Reconstruction Using a Folded Image Training Strategy for Abdominal 3D T1-weighted Imaging.
    Funayama S; Motosugi U; Ichikawa S; Morisaka H; Omiya Y; Onishi H
    Magn Reson Med Sci; 2023 Oct; 22(4):515-526. PubMed ID: 36351603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning denoising reconstruction for improved image quality in fetal cardiac cine MRI.
    Vollbrecht TM; Hart C; Zhang S; Katemann C; Sprinkart AM; Isaak A; Attenberger U; Pieper CC; Kuetting D; Geipel A; Strizek B; Luetkens JA
    Front Cardiovasc Med; 2024; 11():1323443. PubMed ID: 38410246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of utility of deep learning reconstruction on 3D MRCPs obtained with three different k-space data acquisitions in patients with IPMN.
    Matsuyama T; Ohno Y; Yamamoto K; Ikedo M; Yui M; Furuta M; Fujisawa R; Hanamatsu S; Nagata H; Ueda T; Ikeda H; Takeda S; Iwase A; Fukuba T; Akamatsu H; Hanaoka R; Kato R; Murayama K; Toyama H
    Eur Radiol; 2022 Oct; 32(10):6658-6667. PubMed ID: 35687136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrast-enhanced radial 3D fat-suppressed T1-weighted gradient-recalled echo sequence versus conventional fat-suppressed contrast-enhanced T1-weighted studies of the head and neck.
    Wu X; Raz E; Block TK; Geppert C; Hagiwara M; Bruno MT; Fatterpekar GM
    AJR Am J Roentgenol; 2014 Oct; 203(4):883-9. PubMed ID: 25247956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.