These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38341056)

  • 41. RNA-binding proteins in heart development.
    Giudice J; Cooper TA
    Adv Exp Med Biol; 2014; 825():389-429. PubMed ID: 25201112
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Malignant and benign mutations in familial cardiomyopathies: insights into mutations linked to complex cardiovascular phenotypes.
    Xu Q; Dewey S; Nguyen S; Gomes AV
    J Mol Cell Cardiol; 2010 May; 48(5):899-909. PubMed ID: 20298698
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genes and their polymorphisms in mono- and multifactorial cardiomyopathies: towards pharmacogenomics in heart failure.
    Charron P; Komajda M
    Pharmacogenomics; 2002 May; 3(3):367-78. PubMed ID: 12052144
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Zebrafish mbnl mutants model physical and molecular phenotypes of myotonic dystrophy.
    Hinman MN; Richardson JI; Sockol RA; Aronson ED; Stednitz SJ; Murray KN; Berglund JA; Guillemin K
    Dis Model Mech; 2021 Jun; 14(6):. PubMed ID: 34125183
    [TBL] [Abstract][Full Text] [Related]  

  • 45. RNA splicing regulators play critical roles in neurogenesis.
    Fisher E; Feng J
    Wiley Interdiscip Rev RNA; 2022 Nov; 13(6):e1728. PubMed ID: 35388651
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Systematic review of pregnancy in women with inherited cardiomyopathies.
    Krul SP; van der Smagt JJ; van den Berg MP; Sollie KM; Pieper PG; van Spaendonck-Zwarts KY
    Eur J Heart Fail; 2011 Jun; 13(6):584-94. PubMed ID: 21482599
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanisms of RBM20 Cardiomyopathy: Insights From Model Systems.
    Gregorich ZR; Zhang Y; Kamp TJ; Granzier HL; Guo W
    Circ Genom Precis Med; 2024 Feb; 17(1):e004355. PubMed ID: 38288598
    [TBL] [Abstract][Full Text] [Related]  

  • 48. MBNL1 and PTB cooperate to repress splicing of Tpm1 exon 3.
    Gooding C; Edge C; Lorenz M; Coelho MB; Winters M; Kaminski CF; Cherny D; Eperon IC; Smith CW
    Nucleic Acids Res; 2013 May; 41(9):4765-82. PubMed ID: 23511971
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CRISPR gene editing in pluripotent stem cells reveals the function of MBNL proteins during human in vitro myogenesis.
    Mérien A; Tahraoui-Bories J; Cailleret M; Dupont JB; Leteur C; Polentes J; Carteron A; Polvèche H; Concordet JP; Pinset C; Jarrige M; Furling D; Martinat C
    Hum Mol Genet; 2021 Dec; 31(1):41-56. PubMed ID: 34312665
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Gene Expression Analyses during Spontaneous Reversal of Cardiomyopathy in Mice with Repressed Nuclear CUG-BP, Elav-Like Family (CELF) Activity in Heart Muscle.
    Dasgupta T; Coram RJ; Stillwagon SJ; Ladd AN
    PLoS One; 2015; 10(4):e0124462. PubMed ID: 25894229
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Epidemiology of cardiomyopathies and incident heart failure in a population-based cohort study.
    Brownrigg JR; Leo V; Rose J; Low E; Richards S; Carr-White G; Elliott PM
    Heart; 2022 Aug; 108(17):1383-1391. PubMed ID: 34969871
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An Overview of Alternative Splicing Defects Implicated in Myotonic Dystrophy Type I.
    López-Martínez A; Soblechero-Martín P; de-la-Puente-Ovejero L; Nogales-Gadea G; Arechavala-Gomeza V
    Genes (Basel); 2020 Sep; 11(9):. PubMed ID: 32971903
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Disruption of exon-bridging interactions between the minor and major spliceosomes results in alternative splicing around minor introns.
    Olthof AM; White AK; Mieruszynski S; Doggett K; Lee MF; Chakroun A; Abdel Aleem AK; Rousseau J; Magnani C; Roifman CM; Campeau PM; Heath JK; Kanadia RN
    Nucleic Acids Res; 2021 Apr; 49(6):3524-3545. PubMed ID: 33660780
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional Studies and In Silico Analyses to Evaluate Non-Coding Variants in Inherited Cardiomyopathies.
    Frisso G; Detta N; Coppola P; Mazzaccara C; Pricolo MR; D'Onofrio A; Limongelli G; Calabrò R; Salvatore F
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27834932
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evolving Approaches to Genetic Evaluation of Specific Cardiomyopathies.
    Teo LY; Moran RT; Tang WH
    Curr Heart Fail Rep; 2015 Dec; 12(6):339-49. PubMed ID: 26472190
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pre-mRNA mis-splicing of sarcomeric genes in heart failure.
    Zhu C; Chen Z; Guo W
    Biochim Biophys Acta Mol Basis Dis; 2017 Aug; 1863(8):2056-2063. PubMed ID: 27825848
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Translating emerging molecular genetic insights into clinical practice in inherited cardiomyopathies.
    Asatryan B; Medeiros-Domingo A
    J Mol Med (Berl); 2018 Oct; 96(10):993-1024. PubMed ID: 30128729
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The genetic landscape of cardiomyopathy and its role in heart failure.
    McNally EM; Barefield DY; Puckelwartz MJ
    Cell Metab; 2015 Feb; 21(2):174-182. PubMed ID: 25651172
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cyclic AMP-dependent protein kinase A regulates the alternative splicing of CaMKIIδ.
    Gu Q; Jin N; Sheng H; Yin X; Zhu J
    PLoS One; 2011; 6(11):e25745. PubMed ID: 22132070
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Alternative splicing regulation impacts heart development.
    Cooper TA
    Cell; 2005 Jan; 120(1):1-2. PubMed ID: 15652472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.