These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38341417)

  • 1. CHCHD2 up-regulation in Huntington disease mediates a compensatory protective response against oxidative stress.
    Liu X; Wang F; Fan X; Chen M; Xu X; Xu Q; Zhu H; Xu A; Pouladi MA; Xu X
    Cell Death Dis; 2024 Feb; 15(2):126. PubMed ID: 38341417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutant huntingtin impairs neurodevelopment in human brain organoids through CHCHD2-mediated neurometabolic failure.
    Lisowski P; Lickfett S; Rybak-Wolf A; Menacho C; Le S; Pentimalli TM; Notopoulou S; Dykstra W; Oehler D; López-Calcerrada S; Mlody B; Otto M; Wu H; Richter Y; Roth P; Anand R; Kulka LAM; Meierhofer D; Glazar P; Legnini I; Telugu NS; Hahn T; Neuendorf N; Miller DC; Böddrich A; Polzin A; Mayatepek E; Diecke S; Olzscha H; Kirstein J; Ugalde C; Petrakis S; Cambridge S; Rajewsky N; Kühn R; Wanker EE; Priller J; Metzger JJ; Prigione A
    Nat Commun; 2024 Aug; 15(1):7027. PubMed ID: 39174523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversal of Phenotypic Abnormalities by CRISPR/Cas9-Mediated Gene Correction in Huntington Disease Patient-Derived Induced Pluripotent Stem Cells.
    Xu X; Tay Y; Sim B; Yoon SI; Huang Y; Ooi J; Utami KH; Ziaei A; Ng B; Radulescu C; Low D; Ng AYJ; Loh M; Venkatesh B; Ginhoux F; Augustine GJ; Pouladi MA
    Stem Cell Reports; 2017 Mar; 8(3):619-633. PubMed ID: 28238795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FOXOs modulate proteasome activity in human-induced pluripotent stem cells of Huntington's disease and their derived neural cells.
    Liu Y; Qiao F; Leiferman PC; Ross A; Schlenker EH; Wang H
    Hum Mol Genet; 2017 Nov; 26(22):4416-4428. PubMed ID: 28973411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative proteomic analysis of induced pluripotent stem cells derived from a human Huntington's disease patient.
    Chae JI; Kim DW; Lee N; Jeon YJ; Jeon I; Kwon J; Kim J; Soh Y; Lee DS; Seo KS; Choi NJ; Park BC; Kang SH; Ryu J; Oh SH; Shin DA; Lee DR; Do JT; Park IH; Daley GQ; Song J
    Biochem J; 2012 Sep; 446(3):359-71. PubMed ID: 22694310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulating FKBP5/FKBP51 and autophagy lowers HTT (huntingtin) levels.
    Bailus BJ; Scheeler SM; Simons J; Sanchez MA; Tshilenge KT; Creus-Muncunill J; Naphade S; Lopez-Ramirez A; Zhang N; Lakshika Madushani K; Moroz S; Loureiro A; Schreiber KH; Hausch F; Kennedy BK; Ehrlich ME; Ellerby LM
    Autophagy; 2021 Dec; 17(12):4119-4140. PubMed ID: 34024231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired mitochondrial dynamics and Nrf2 signaling contribute to compromised responses to oxidative stress in striatal cells expressing full-length mutant huntingtin.
    Jin YN; Yu YV; Gundemir S; Jo C; Cui M; Tieu K; Johnson GV
    PLoS One; 2013; 8(3):e57932. PubMed ID: 23469253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progerin-Induced Transcriptional Changes in Huntington's Disease Human Pluripotent Stem Cell-Derived Neurons.
    Cohen-Carmon D; Sorek M; Lerner V; Divya MS; Nissim-Rafinia M; Yarom Y; Meshorer E
    Mol Neurobiol; 2020 Mar; 57(3):1768-1777. PubMed ID: 31834602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutant huntingtin inhibits the mitochondrial unfolded protein response by impairing ABCB10 mRNA stability.
    Fu Z; Liu F; Liu C; Jin B; Jiang Y; Tang M; Qi X; Guo X
    Biochim Biophys Acta Mol Basis Dis; 2019 Jun; 1865(6):1428-1435. PubMed ID: 30802639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PD-linked CHCHD2 mutations impair CHCHD10 and MICOS complex leading to mitochondria dysfunction.
    Zhou W; Ma D; Sun AX; Tran HD; Ma DL; Singh BK; Zhou J; Zhang J; Wang D; Zhao Y; Yen PM; Goh E; Tan EK
    Hum Mol Genet; 2019 Apr; 28(7):1100-1116. PubMed ID: 30496485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide screening in pluripotent cells identifies Mtf1 as a suppressor of mutant huntingtin toxicity.
    Ferlazzo GM; Gambetta AM; Amato S; Cannizzaro N; Angiolillo S; Arboit M; Diamante L; Carbognin E; Romani P; La Torre F; Galimberti E; Pflug F; Luoni M; Giannelli S; Pepe G; Capocci L; Di Pardo A; Vanzani P; Zennaro L; Broccoli V; Leeb M; Moro E; Maglione V; Martello G
    Nat Commun; 2023 Jul; 14(1):3962. PubMed ID: 37407555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic alterations mediate iPSC-induced normalization of DNA repair gene expression and TNR stability in Huntington's disease cells.
    Mollica PA; Zamponi M; Reid JA; Sharma DK; White AE; Ogle RC; Bruno RD; Sachs PC
    J Cell Sci; 2018 Jul; 131(13):. PubMed ID: 29898922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Huntington disease iPSCs show early molecular changes in intracellular signaling, the expression of oxidative stress proteins and the p53 pathway.
    Szlachcic WJ; Switonski PM; Krzyzosiak WJ; Figlerowicz M; Figiel M
    Dis Model Mech; 2015 Sep; 8(9):1047-57. PubMed ID: 26092128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of Parkinson's disease-associated protein CHCHD2 affects mitochondrial crista structure and destabilizes cytochrome c.
    Meng H; Yamashita C; Shiba-Fukushima K; Inoshita T; Funayama M; Sato S; Hatta T; Natsume T; Umitsu M; Takagi J; Imai Y; Hattori N
    Nat Commun; 2017 Jun; 8():15500. PubMed ID: 28589937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced Expression of Foxp1 as a Contributing Factor in Huntington's Disease.
    Louis Sam Titus ASC; Yusuff T; Cassar M; Thomas E; Kretzschmar D; D'Mello SR
    J Neurosci; 2017 Jul; 37(27):6575-6587. PubMed ID: 28550168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CryoET reveals organelle phenotypes in huntington disease patient iPSC-derived and mouse primary neurons.
    Wu GH; Smith-Geater C; Galaz-Montoya JG; Gu Y; Gupte SR; Aviner R; Mitchell PG; Hsu J; Miramontes R; Wang KQ; Geller NR; Hou C; Danita C; Joubert LM; Schmid MF; Yeung S; Frydman J; Mobley W; Wu C; Thompson LM; Chiu W
    Nat Commun; 2023 Feb; 14(1):692. PubMed ID: 36754966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of Excessive Monoamine Oxidase A/B Activity Protects Against Stress-induced Neuronal Death in Huntington Disease.
    Ooi J; Hayden MR; Pouladi MA
    Mol Neurobiol; 2015 Dec; 52(3):1850-1861. PubMed ID: 25398695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial SIRT3 confers neuroprotection in Huntington's disease by regulation of oxidative challenges and mitochondrial dynamics.
    Naia L; Carmo C; Campesan S; Fão L; Cotton VE; Valero J; Lopes C; Rosenstock TR; Giorgini F; Rego AC
    Free Radic Biol Med; 2021 Feb; 163():163-179. PubMed ID: 33285261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of induced pluripotent stem cell line, ICGi033-A, by reprogramming peripheral blood mononuclear cells from a patient with Huntington's disease.
    Grigor'eva EV; Malakhova AA; Sorogina DA; Pavlova SV; Malankhanova TB; Abramycheva NY; Klyushnikov SA; Illarioshkin SN; Zakian SM
    Stem Cell Res; 2022 Aug; 63():102868. PubMed ID: 35872525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induced Pluripotent HD Monkey Stem Cells Derived Neural Cells for Drug Discovery.
    Kunkanjanawan T; Carter R; Ahn KS; Yang J; Parnpai R; Chan AWS
    SLAS Discov; 2017 Jul; 22(6):696-705. PubMed ID: 28027448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.