These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38341618)

  • 1. Frontiers in Photoelectrochemical Catalysis: A Focus on Valuable Product Synthesis.
    Sendeku MG; Shifa TA; Dajan FT; Ibrahim KB; Wu B; Yang Y; Moretti E; Vomiero A; Wang F
    Adv Mater; 2024 May; 36(21):e2308101. PubMed ID: 38341618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic Upgrading through Photoelectrochemical Reactions: Toward Higher Profits.
    Liu TK; Jang GY; Kim S; Zhang K; Zheng X; Park JH
    Small Methods; 2024 Feb; 8(2):e2300315. PubMed ID: 37382404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle-Based Photoelectrodes for PEC Water Splitting: Concepts and Perspectives.
    Liu D; Kuang Y
    Adv Mater; 2024 Sep; 36(37):e2311692. PubMed ID: 38619834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in Photoelectrochemical Applications of Silicon Materials for Solar-to-Chemicals Conversion.
    Zhang D; Shi J; Zi W; Wang P; Liu SF
    ChemSusChem; 2017 Nov; 10(22):4324-4341. PubMed ID: 28977741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imperfect makes perfect: defect engineering of photoelectrodes towards efficient photoelectrochemical water splitting.
    Wang X; Ma S; Liu B; Wang S; Huang W
    Chem Commun (Camb); 2023 Aug; 59(67):10044-10066. PubMed ID: 37551587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancing Photoelectrochemical Energy Conversion through Atomic Design of Catalysts.
    Zhao E; Du K; Yin PF; Ran J; Mao J; Ling T; Qiao SZ
    Adv Sci (Weinh); 2022 Jan; 9(1):e2104363. PubMed ID: 34850603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanocarbon-Enhanced 2D Photoelectrodes: A New Paradigm in Photoelectrochemical Water Splitting.
    Ke J; He F; Wu H; Lyu S; Liu J; Yang B; Li Z; Zhang Q; Chen J; Lei L; Hou Y; Ostrikov K
    Nanomicro Lett; 2020 Nov; 13(1):24. PubMed ID: 34138209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoelectrochemical Green Hydrogen Production Utilizing ZnO Nanostructured Photoelectrodes.
    Al-Saeedi SI
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the Solar Hydrogen Sensitivity of GeSe Thin Film Photoelectrode with Photoelectrochemical Environment.
    Ni H; Fang Y; Hu Y; Xiao G; Wu X; Jiang F
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):46861-46871. PubMed ID: 37769166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances and challenges in the modification of photoelectrode materials for photoelectrocatalytic water splitting.
    Yang L; Li F; Xiang Q
    Mater Horiz; 2024 Apr; 11(7):1638-1657. PubMed ID: 38324371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental dataset of nanoporous GaN photoelectrode supported on patterned sapphire substrates for photoelectrochemical water splitting.
    Li D; Liu J; Wang Y; Wu A; Ruan R; Li Z; Xu Z
    Data Brief; 2019 Oct; 26():104433. PubMed ID: 31516954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition-Metal-Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review.
    Li D; Shi J; Li C
    Small; 2018 Jun; 14(23):e1704179. PubMed ID: 29575653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational Design of Photoelectrodes with Rapid Charge Transport for Photoelectrochemical Applications.
    Sheng X; Xu T; Feng X
    Adv Mater; 2019 Mar; 31(11):e1805132. PubMed ID: 30637813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-printed Cu
    Ahn J; Lee S; Kim JH; Wajahat M; Sim HH; Bae J; Pyo J; Jahandar M; Lim DC; Seol SK
    Nanoscale Adv; 2020 Dec; 2(12):5600-5606. PubMed ID: 36133885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Emergence of High-Performance Conjugated Polymer/Inorganic Semiconductor Hybrid Photoelectrodes for Solar-Driven Photoelectrochemical Water Splitting.
    Zhou J; Cheng H; Cheng J; Wang L; Xu H
    Small Methods; 2024 Feb; 8(2):e2300418. PubMed ID: 37421184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-situ electrodeposition synthesis of Z-scheme rGO/g-C
    Yu C; Hou J; Zhang B; Liu S; Pan X; Song H; Hou X; Yan Q; Zhou C; Liu G; Zhang Y; Xin Y
    J Environ Manage; 2022 Apr; 308():114615. PubMed ID: 35131709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clever Nanomaterials Fabrication Techniques Encounter Sustainable C1 Catalysis.
    Wang Y; Sun J; Tsubaki N
    Acc Chem Res; 2023 Sep; 56(17):2341-2353. PubMed ID: 37579494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Nanostructure-Interface of Photoanode Materials Toward Photoelectrochemical Water Oxidation.
    Tang R; Zhou S; Zhang Z; Zheng R; Huang J
    Adv Mater; 2021 Apr; 33(17):e2005389. PubMed ID: 33733537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elaborately Modified BiVO
    Kim JH; Lee JS
    Adv Mater; 2019 May; 31(20):e1806938. PubMed ID: 30793384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solar-Driven Photoelectrochemical Performance of Novel ZnO/Ag
    Mustafa E; Adam RE; Rouf P; Willander M; Nur O
    Nanoscale Res Lett; 2021 Aug; 16(1):133. PubMed ID: 34417906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.