These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 38341689)

  • 1. Pressure-dependent flow enhancement in carbon nanotubes.
    Li H; Ge Z; Aminpour M; Wen L; Galindo-Torres SA
    J Chem Phys; 2024 Feb; 160(5):. PubMed ID: 38341689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How fast does water flow in carbon nanotubes?
    Kannam SK; Todd BD; Hansen JS; Daivis PJ
    J Chem Phys; 2013 Mar; 138(9):094701. PubMed ID: 23485316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How boundary slip controls emergent Darcy flow of liquids in tortuous and in capillary pores.
    Singh K
    Phys Rev E; 2020 Jul; 102(1-1):013101. PubMed ID: 32794951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reassessing fast water transport through carbon nanotubes.
    Thomas JA; McGaughey AJ
    Nano Lett; 2008 Sep; 8(9):2788-93. PubMed ID: 18665654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids.
    Niavarani A; Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011606. PubMed ID: 20365383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Barriers to superfast water transport in carbon nanotube membranes.
    Walther JH; Ritos K; Cruz-Chu ER; Megaridis CM; Koumoutsakos P
    Nano Lett; 2013 May; 13(5):1910-4. PubMed ID: 23521014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong Electroosmotic Coupling Dominates Ion Conductance of 1.5 nm Diameter Carbon Nanotube Porins.
    Yao YC; Taqieddin A; Alibakhshi MA; Wanunu M; Aluru NR; Noy A
    ACS Nano; 2019 Nov; 13(11):12851-12859. PubMed ID: 31682401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corrected second-order slip boundary condition for fluid flows in nanochannels.
    Zhang H; Zhang Z; Zheng Y; Ye H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066303. PubMed ID: 20866518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating water transport in carbon nanotubes: a critical review and inclusion of scale effects.
    Karim KE; Barisik M; Bakli C; Kim B
    Phys Chem Chem Phys; 2024 Jul; 26(28):19069-19082. PubMed ID: 38973497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid-Liquid Flow at Nanoscale: Slip and Hydrodynamic Boundary Conditions.
    Hilaire L; Siboulet B; Charton S; Dufrêche JF
    Langmuir; 2023 Feb; 39(6):2260-2273. PubMed ID: 36719852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast Permeation of Small Ions in Carbon Nanotubes.
    Buchsbaum SF; Jue ML; Sawvel AM; Chen C; Meshot ER; Park SJ; Wood M; Wu KJ; Bilodeau CL; Aydin F; Pham TA; Lau EY; Fornasiero F
    Adv Sci (Weinh); 2021 Feb; 8(3):2001802. PubMed ID: 33552850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation between flow enhancement factor and structure for core-softened fluids inside nanotubes.
    Bordin JR; Diehl A; Barbosa MC
    J Phys Chem B; 2013 Jun; 117(23):7047-56. PubMed ID: 23692639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscosity of Water Interfaces with Hydrophobic Nanopores: Application to Water Flow in Carbon Nanotubes.
    Shaat M
    Langmuir; 2017 Nov; 33(44):12814-12819. PubMed ID: 29035046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow of methane in shale nanopores at low and high pressure by molecular dynamics simulations.
    Jin Z; Firoozabadi A
    J Chem Phys; 2015 Sep; 143(10):104315. PubMed ID: 26374043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drag on a nanotube in uniform liquid argon flow.
    Tang W; Advani SG
    J Chem Phys; 2006 Nov; 125(17):174706. PubMed ID: 17100460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomalous water transport in narrow-diameter carbon nanotubes.
    Wan Z; Gao Y; Chen X; Zeng XC; Francisco JS; Zhu C
    Proc Natl Acad Sci U S A; 2022 Sep; 119(39):e2211348119. PubMed ID: 36122221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure.
    Wang L; Dumont RS; Dickson JM
    J Chem Phys; 2012 Jul; 137(4):044102. PubMed ID: 22852592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of activation energy and reduced viscosity on the enhancement of water flow through carbon nanotubes.
    Babu JS; Sathian SP
    J Chem Phys; 2011 May; 134(19):194509. PubMed ID: 21599075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling viscoelastic flow in microchannels with slip.
    Bravo-Gutiérrez ME; Castro M; Hernández-Machado A; Poiré EC
    Langmuir; 2011 Mar; 27(6):2075-9. PubMed ID: 21322616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why are carbon nanotubes fast transporters of water?
    Joseph S; Aluru NR
    Nano Lett; 2008 Feb; 8(2):452-8. PubMed ID: 18189436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.