These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 38341689)

  • 21. Carbon Nanotubes Flow Induced by Rotating Stretching Disk with Non- Linear Radiations and Slip.
    Sultana U; Mushtaq M; Khan I
    Comb Chem High Throughput Screen; 2022; 25(14):2498-2508. PubMed ID: 34254907
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrodynamic properties of carbon nanotubes.
    Walther JH; Werder T; Jaffe RL; Koumoutsakos P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):062201. PubMed ID: 15244641
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative study between continuum and atomistic approaches of liquid flow through a finite length cylindrical nanopore.
    Huang C; Choi PY; Nandakumar K; Kostiuk LW
    J Chem Phys; 2007 Jun; 126(22):224702. PubMed ID: 17581075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonequilibrium molecular dynamics simulation of pressure-driven water transport through modified CNT membranes.
    Wang L; Dumont RS; Dickson JM
    J Chem Phys; 2013 Mar; 138(12):124701. PubMed ID: 23556736
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular dynamics simulation of pressure-driven water flow in silicon-carbide nanotubes.
    Khademi M; Sahimi M
    J Chem Phys; 2011 Nov; 135(20):204509. PubMed ID: 22128945
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flow through a circular tube with a permeable Navier slip boundary.
    Cox BJ; Hill JM
    Nanoscale Res Lett; 2011 May; 6(1):389. PubMed ID: 21711926
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A method to determine zeta potential and Navier slip coefficient of microchannels.
    Park HM
    J Colloid Interface Sci; 2010 Jul; 347(1):132-41. PubMed ID: 20362996
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices.
    Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D
    Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wettability and confinement size effects on stability of water conveying nanotubes.
    Shaat M; Javed U; Faroughi S
    Sci Rep; 2020 Oct; 10(1):17167. PubMed ID: 33051583
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanofluidic Transport Theory with Enhancement Factors Approaching One.
    Heiranian M; Aluru NR
    ACS Nano; 2020 Jan; 14(1):272-281. PubMed ID: 31854970
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rheological study of polymer flow past rough surfaces with slip boundary conditions.
    Niavarani A; Priezjev NV
    J Chem Phys; 2008 Oct; 129(14):144902. PubMed ID: 19045163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping fluid structuration to flow enhancement in nanofluidic channels.
    Agarwal A; Arya V; Golani B; Bakli C; Chakraborty S
    J Chem Phys; 2023 Jun; 158(21):. PubMed ID: 37260011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrodynamic slip boundary condition at chemically patterned surfaces: a continuum deduction from molecular dynamics.
    Qian T; Wang XP; Sheng P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):022501. PubMed ID: 16196615
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular scale contact line hydrodynamics of immiscible flows.
    Qian T; Wang XP; Sheng P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016306. PubMed ID: 12935245
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Newtonian flow inside carbon nanotube with permeable boundary taking into account van der Waals forces.
    Chan Y; Lee SL; Chen W; Zheng L; Shi Y; Ren Y
    Sci Rep; 2019 Aug; 9(1):12121. PubMed ID: 31431670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Confinement effects on liquid-flow characteristics in carbon nanotubes.
    Yasuoka H; Takahama R; Kaneda M; Suga K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063001. PubMed ID: 26764798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Water flow in carbon nanotubes: transition to subcontinuum transport.
    Thomas JA; McGaughey AJ
    Phys Rev Lett; 2009 May; 102(18):184502. PubMed ID: 19518876
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Negative effect of nanoconfinement on water transport across nanotube membranes.
    Zhao K; Wu H; Han B
    J Chem Phys; 2017 Oct; 147(16):164705. PubMed ID: 29096476
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Helmholtz decomposition coupling rotational to irrotational flow of a viscous fluid.
    Joseph DD
    Proc Natl Acad Sci U S A; 2006 Sep; 103(39):14272-7. PubMed ID: 16983077
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Slip velocity and velocity inversion in a cylindrical Couette flow.
    Kim S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036312. PubMed ID: 19392054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.