These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38341736)

  • 1. Connecting poro- and visco-elastic acoustic models of marine sediments: Salinity, force chains, creep, and permeability.
    Chotiros NP
    J Acoust Soc Am; 2024 Feb; 155(2):1005-1020. PubMed ID: 38341736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A porous medium model for mud.
    Chotiros NP
    J Acoust Soc Am; 2021 Jan; 149(1):629. PubMed ID: 33514181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An inversion for Biot parameters in water-saturated sand.
    Chotiros NR
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):1853-68. PubMed ID: 12430798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model-data comparison of high frequency compressional wave attenuation in water-saturated granular medium with bimodal grain size distribution.
    Yang H; Seong W; Lee K
    Ultrasonics; 2018 Jan; 82():161-170. PubMed ID: 28843093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comments on "On pore fluid viscosity and the wave properties of saturated granular materials including marine sediments" [J. Acoust. Soc. Am. 122, 1486-1501 (2007)].
    Chotiros NP; Isakson MJ
    J Acoust Soc Am; 2010 Apr; 127(4):2095-8; discussion 2099-102. PubMed ID: 20369987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in analytical modeling of lumbar disc degeneration.
    Natarajan RN; Williams JR; Andersson GB
    Spine (Phila Pa 1976); 2004 Dec; 29(23):2733-41. PubMed ID: 15564922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two parabolic equations for propagation in layered poro-elastic media.
    Metzler AM; Siegmann WL; Collins MD; Collis JM
    J Acoust Soc Am; 2013 Jul; 134(1):246-56. PubMed ID: 23862802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Normal incidence reflection loss from a sandy sediment.
    Chotiros NP; Lyons AP; Osler J; Pace NG
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):1831-41. PubMed ID: 12430796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single and bi-compartment poro-elastic model of perfused biological soft tissues: FEniCSx implementation and tutorial.
    Lavigne T; Urcun S; Rohan PY; Sciumè G; Baroli D; Bordas SPA
    J Mech Behav Biomed Mater; 2023 Jul; 143():105902. PubMed ID: 37209595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying the effects of roughness scattering on reflection loss measurements.
    Isakson MJ; Chotiros NP; Yarbrough RA; Piper JN
    J Acoust Soc Am; 2012 Dec; 132(6):3687-97. PubMed ID: 23231100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite-difference modeling of the monopole acoustic logs in a horizontally stratified porous formation.
    Guan W; Hu H; He X
    J Acoust Soc Am; 2009 Apr; 125(4):1942-50. PubMed ID: 19354370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Mathieu function boundary spectral method for scattering by multiple variable poro-elastic plates, with applications to metamaterials and acoustics.
    Colbrook MJ; Kisil AV
    Proc Math Phys Eng Sci; 2020 Sep; 476(2241):20200184. PubMed ID: 33071575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding how reduced loading affects Achilles tendon mechanical properties using a fibre-reinforced poro-visco-hyper-elastic model.
    Notermans T; Khayyeri H; Isaksson H
    J Mech Behav Biomed Mater; 2019 Aug; 96():301-309. PubMed ID: 31103830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poro-acoustoelastic constants based on Padé approximation.
    Fu BY; Fu LY
    J Acoust Soc Am; 2017 Nov; 142(5):2890. PubMed ID: 29195418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of three geoacoustic models using Bayesian inversion and selection techniques applied to wave speed and attenuation measurements.
    Bonomo AL; Isakson MJ
    J Acoust Soc Am; 2018 Apr; 143(4):2501. PubMed ID: 29716256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The acoustical absorption by air-saturated aerogel powders.
    Begum H; Xue Y; Bolton JS; Horoshenkov KV
    J Acoust Soc Am; 2022 Mar; 151(3):1502. PubMed ID: 35364908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guided wave modes in porous cylinders: Theory.
    Wisse CJ; Smeulders DM; Chao G; van Dongen ME
    J Acoust Soc Am; 2007 Oct; 122(4):2049-56. PubMed ID: 17902842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creep and visco-elastic recovery of cured and secondary-cured composites and resin-modified glass-ionomers.
    el Hejazi AA; Watts DC
    Dent Mater; 1999 Mar; 15(2):138-43. PubMed ID: 10551105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A note on the reduced creep function corresponding to the quasi-linear visco-elastic model proposed by Fung.
    Dortmans LJ; van de Ven AA; Sauren AA
    J Biomech Eng; 1994 Aug; 116(3):373-5. PubMed ID: 7799643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ measurements of sediment acoustic properties in Currituck Sound and comparison to models.
    Lee KM; Ballard MS; McNeese AR; Muir TG; Wilson PS; Costley RD; Hathaway KK
    J Acoust Soc Am; 2016 Nov; 140(5):3593. PubMed ID: 27908029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.