These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38341760)

  • 21. Switching from a continuous to a discontinuous phase transition under quenched disorder.
    Nowak B; Sznajd-Weron K
    Phys Rev E; 2022 Jul; 106(1-1):014125. PubMed ID: 35974584
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Static and dynamic attractive-repulsive interactions in two coupled nonlinear oscillators.
    Dixit S; Shrimali MD
    Chaos; 2020 Mar; 30(3):033114. PubMed ID: 32237763
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complexity and transition to chaos in coupled Adler-type oscillators.
    Estevez-Moya D; Estevez-Rams E; Kantz H
    Phys Rev E; 2023 Apr; 107(4-1):044212. PubMed ID: 37198858
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Partial synchronization and community switching in phase-oscillator networks and its analysis based on a bidirectional, weighted chain of three oscillators.
    Kato M; Kori H
    Phys Rev E; 2023 Jan; 107(1-1):014210. PubMed ID: 36797893
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Higher-order interactions induce anomalous transitions to synchrony.
    León I; Muolo R; Hata S; Nakao H
    Chaos; 2024 Jan; 34(1):. PubMed ID: 38194370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Continuous and discontinuous phase transitions and partial synchronization in stochastic three-state oscillators.
    Wood K; Van den Broeck C; Kawai R; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041132. PubMed ID: 17994961
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamics of the generalized Kuramoto model with nonlinear coupling: Bifurcation and stability.
    Zou W; Wang J
    Phys Rev E; 2020 Jul; 102(1-1):012219. PubMed ID: 32794968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synchronization in a system of globally coupled oscillators with time delay.
    Choi MY; Kim HJ; Kim D; Hong H
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):371-81. PubMed ID: 11046275
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Explosive death in nonlinear oscillators coupled by quorum sensing.
    Verma UK; Chaurasia SS; Sinha S
    Phys Rev E; 2019 Sep; 100(3-1):032203. PubMed ID: 31640010
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamical states and bifurcations in coupled thermoacoustic oscillators.
    Srikanth S; Pawar SA; Manoj K; Sujith RI
    Chaos; 2022 Jul; 32(7):073129. PubMed ID: 35907737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phase transition to frequency entrainment in a long chain of pulse-coupled oscillators.
    Ostborn P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016105. PubMed ID: 12241424
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantum critical detector: amplifying weak signals using discontinuous quantum phase transitions.
    Yang LP; Jacob Z
    Opt Express; 2019 Apr; 27(8):10482-10494. PubMed ID: 31052907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phase-flip and oscillation-quenching-state transitions through environmental diffusive coupling.
    Sharma A; Verma UK; Shrimali MD
    Phys Rev E; 2016 Dec; 94(6-1):062218. PubMed ID: 28085412
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Universal occurrence of the phase-flip bifurcation in time-delay coupled systems.
    Prasad A; Dana SK; Karnatak R; Kurths J; Blasius B; Ramaswamy R
    Chaos; 2008 Jun; 18(2):023111. PubMed ID: 18601478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chaotic synchronizations of spatially extended systems as nonequilibrium phase transitions.
    Cencini M; Tessone CJ; Torcini A
    Chaos; 2008 Sep; 18(3):037125. PubMed ID: 19045499
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Order parameter analysis for low-dimensional behaviors of coupled phase-oscillators.
    Gao J; Xu C; Sun Y; Zheng Z
    Sci Rep; 2016 Jul; 6():30184. PubMed ID: 27443639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phase-flip transition in relay-coupled nonlinear oscillators.
    Sharma A; Shrimali MD; Prasad A; Ramaswamy R; Feudel U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016226. PubMed ID: 21867292
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exact solution for first-order synchronization transition in a generalized Kuramoto model.
    Hu X; Boccaletti S; Huang W; Zhang X; Liu Z; Guan S; Lai CH
    Sci Rep; 2014 Dec; 4():7262. PubMed ID: 25434404
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transitions and transport for a spatially periodic stochastic system with locally coupled oscillators.
    Zhao YK; Li JH; Zhao XG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 1):031113. PubMed ID: 15524512
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Collective dynamics of phase oscillator populations with three-body interactions.
    Wang X; Zheng Z; Xu C
    Phys Rev E; 2021 Nov; 104(5-1):054208. PubMed ID: 34942717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.