These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38342060)

  • 21. Pyrolysis of municipal solid waste: A kinetic study through multi-step reaction models.
    Márquez A; Patlaka E; Sfakiotakis S; Ortiz I; Sánchez-Hervás JM
    Waste Manag; 2023 Dec; 172():171-181. PubMed ID: 37918310
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of intelligent Municipal Solid waste Sorter for recyclables.
    Lin YH; Mao WL; Fathurrahman HIK
    Waste Manag; 2024 Feb; 174():597-604. PubMed ID: 38145587
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Utilization of mixed organic-plastic municipal solid waste as renewable solid fuel employing wet torrefaction.
    Triyono B; Prawisudha P; Aziz M; Mardiyati ; Pasek AD; Yoshikawa K
    Waste Manag; 2019 Jul; 95():1-9. PubMed ID: 31351594
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flue gas torrefaction of municipal solid waste: Fuel properties, combustion characterizations, and nitrogen /sulfur emissions.
    Zhu X; Li S; Zhang Y; Li J; Zhang Z; Sun Y; Zhou S; Li N; Yan B; Chen G
    Bioresour Technol; 2022 May; 351():126967. PubMed ID: 35272035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The impact of municipal solid waste sorting policy on air pollution: Evidence from Shanghai, China.
    Wang Y; Shi Q
    PLoS One; 2022; 17(11):e0277035. PubMed ID: 36322578
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Attitude of Chinese public towards municipal solid waste sorting policy: A text mining study.
    Wu Z; Zhang Y; Chen Q; Wang H
    Sci Total Environ; 2021 Feb; 756():142674. PubMed ID: 33071141
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Classification and comparison of municipal solid waste based on thermochemical characteristics.
    Zhou H; Meng A; Long Y; Li Q; Zhang Y
    J Air Waste Manag Assoc; 2014 May; 64(5):597-616. PubMed ID: 24941708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulation analysis and ternary diagram of municipal solid waste pyrolysis and gasification based on the equilibrium model.
    Deng N; Zhang A; Zhang Q; He G; Cui W; Chen G; Song C
    Bioresour Technol; 2017 Jul; 235():371-379. PubMed ID: 28384590
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The steam gasification reactivity and kinetics of municipal solid waste chars derived from rapid pyrolysis.
    Xu F; Wang B; Yang D; Qiao Y; Tian Y
    Waste Manag; 2018 Oct; 80():64-72. PubMed ID: 30455028
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An overview of the municipal solid waste management modes and innovations in Shanghai, China.
    Xiao S; Dong H; Geng Y; Francisco MJ; Pan H; Wu F
    Environ Sci Pollut Res Int; 2020 Aug; 27(24):29943-29953. PubMed ID: 32504437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distribution of Hg during sewage sludge and municipal solid waste Co-pyrolysis: Influence of multiple factors.
    Sun Y; Tao J; Chen G; Yan B; Cheng Z
    Waste Manag; 2020 Apr; 107():276-284. PubMed ID: 32320940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tackling municipal solid waste crisis in India: Insights into cutting-edge technologies and risk assessment.
    Singh M; Singh M; Singh SK
    Sci Total Environ; 2024 Mar; 917():170453. PubMed ID: 38296084
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Valorization of groundnut shell via pyrolysis: Product distribution, thermodynamic analysis, kinetic estimation, and artificial neural network modeling.
    Hai A; Bharath G; Daud M; Rambabu K; Ali I; Hasan SW; Show P; Banat F
    Chemosphere; 2021 Nov; 283():131162. PubMed ID: 34157626
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of additives on the co-pyrolysis of municipal solid waste and paper sludge by using thermogravimetric analysis.
    Fang S; Yu Z; Lin Y; Lin Y; Fan Y; Liao Y; Ma X
    Bioresour Technol; 2016 Jun; 209():265-72. PubMed ID: 26985626
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characteristics of the pyrolytic products and the pollutant emissions at different operating stages from a pilot waste tire pyrolysis furnace.
    Fu J; Ye W; Ji L; Yin Y; Xu X; Huang Q; Li X; Jiao W; Zhan M
    Waste Manag; 2024 Feb; 174():585-596. PubMed ID: 38142564
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multi-objective optimization of technology solutions in municipal solid waste treatment system coupled with pollutants cross-media metabolism issues.
    Chen C; Wen Z; Wang Y; Zhang W; Zhang T
    Sci Total Environ; 2022 Feb; 807(Pt 1):150664. PubMed ID: 34597546
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Research on the Combustion Performance of Municipal Solid Waste in Different Sorting Scenarios: Thermokinetics Investigation via TG-DSC-FTIR-MS.
    Li B; Zhang W; Jia F; Yang T; Bai S; Zhou Q
    ACS Omega; 2024 Jan; 9(1):1206-1215. PubMed ID: 38222613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interactive effect of the sorted components of solid recovered fuel manufactured from municipal solid waste by thermogravimetric and kinetic analysis.
    Wu L; Jiang X; Lv G; Li X; Yan J
    Waste Manag; 2020 Feb; 102():270-280. PubMed ID: 31698229
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical characterization of municipal solid waste from two waste dumps at Delhi, India.
    Ramaiah BJ; Ramana GV; Datta M
    Waste Manag; 2017 Oct; 68():275-291. PubMed ID: 28602427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of MSW pyrolysis products based on a deep artificial neural network.
    Zang Y; Ge S; Lin Y; Yin L; Chen D
    Waste Manag; 2024 Mar; 176():159-168. PubMed ID: 38281347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.