These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 38342188)
1. Neurovascular coupling in eye-open-eye-close task and resting state: Spectral correspondence between concurrent EEG and fMRI. Kung YC; Li CW; Hsu AL; Liu CY; Wu CW; Chang WC; Lin CP Neuroimage; 2024 Apr; 289():120535. PubMed ID: 38342188 [TBL] [Abstract][Full Text] [Related]
2. Integration of Simultaneous Resting-State Electroencephalography, Functional Magnetic Resonance Imaging, and Eye-Tracker Methods to Determine and Verify Electroencephalography Vigilance Measure. Mayeli A; Al Zoubi O; Misaki M; Stewart JL; Zotev V; Luo Q; Phillips R; Fischer S; Götz M; Paulus MP; Refai H; Bodurka J Brain Connect; 2020 Dec; 10(10):535-546. PubMed ID: 33112650 [No Abstract] [Full Text] [Related]
3. Traces of EEG-fMRI coupling reveals neurovascular dynamics on sleep inertia. Wang ZJ; Lee HC; Chuang CH; Hsiao FC; Lee SH; Hsu AL; Wu CW Sci Rep; 2024 Jan; 14(1):1537. PubMed ID: 38233587 [TBL] [Abstract][Full Text] [Related]
4. Modeling the Hemodynamic Response Function Using EEG-fMRI Data During Eyes-Open Resting-State Conditions and Motor Task Execution. Prokopiou PC; Xifra-Porxas A; Kassinopoulos M; Boudrias MH; Mitsis GD Brain Topogr; 2022 May; 35(3):302-321. PubMed ID: 35488957 [TBL] [Abstract][Full Text] [Related]
5. Augmenting interictal mapping with neurovascular coupling biomarkers by structured factorization of epileptic EEG and fMRI data. Van Eyndhoven S; Dupont P; Tousseyn S; Vervliet N; Van Paesschen W; Van Huffel S; Hunyadi B Neuroimage; 2021 Mar; 228():117652. PubMed ID: 33359347 [TBL] [Abstract][Full Text] [Related]
6. EEG spatiospectral patterns and their link to fMRI BOLD signal via variable hemodynamic response functions. Labounek R; Bridwell DA; Mareček R; Lamoš M; Mikl M; Bednařík P; Baštinec J; Slavíček T; Hluštík P; Brázdil M; Jan J J Neurosci Methods; 2019 Apr; 318():34-46. PubMed ID: 30802472 [TBL] [Abstract][Full Text] [Related]
7. EEG and fMRI coupling and decoupling based on joint independent component analysis (jICA). Heugel N; Beardsley SA; Liebenthal E J Neurosci Methods; 2022 Mar; 369():109477. PubMed ID: 34998799 [TBL] [Abstract][Full Text] [Related]
8. Value of Frequency Domain Resting-State Functional Magnetic Resonance Imaging Metrics Amplitude of Low-Frequency Fluctuation and Fractional Amplitude of Low-Frequency Fluctuation in the Assessment of Brain Tumor-Induced Neurovascular Uncoupling. Agarwal S; Lu H; Pillai JJ Brain Connect; 2017 Aug; 7(6):382-389. PubMed ID: 28657344 [TBL] [Abstract][Full Text] [Related]
9. Reactivity of hemodynamic responses and functional connectivity to different states of alpha synchrony: a concurrent EEG-fMRI study. Wu L; Eichele T; Calhoun VD Neuroimage; 2010 Oct; 52(4):1252-60. PubMed ID: 20510374 [TBL] [Abstract][Full Text] [Related]
10. Phase-amplitude coupling and the BOLD signal: A simultaneous intracranial EEG (icEEG) - fMRI study in humans performing a finger-tapping task. Murta T; Chaudhary UJ; Tierney TM; Dias A; Leite M; Carmichael DW; Figueiredo P; Lemieux L Neuroimage; 2017 Feb; 146():438-451. PubMed ID: 27554531 [TBL] [Abstract][Full Text] [Related]
11. Localizing Spectral Interactions in the Resting State Network Using the Hilbert-Huang Transform. Hsu AL; Li CW; Qin P; Lo MT; Wu CW Brain Sci; 2022 Jan; 12(2):. PubMed ID: 35203903 [TBL] [Abstract][Full Text] [Related]
12. Frequency and amplitude modulation of resting-state fMRI signals and their functional relevance in normal aging. Yang AC; Tsai SJ; Lin CP; Peng CK; Huang NE Neurobiol Aging; 2018 Oct; 70():59-69. PubMed ID: 30007165 [TBL] [Abstract][Full Text] [Related]
13. Resting-state functional magnetic resonance imaging signal variations in aging: The role of neural activity. Zhong XZ; Chen JJ Hum Brain Mapp; 2022 Jun; 43(9):2880-2897. PubMed ID: 35293656 [TBL] [Abstract][Full Text] [Related]
14. Functional connectivity of EEG is subject-specific, associated with phenotype, and different from fMRI. Nentwich M; Ai L; Madsen J; Telesford QK; Haufe S; Milham MP; Parra LC Neuroimage; 2020 Sep; 218():117001. PubMed ID: 32492509 [TBL] [Abstract][Full Text] [Related]
15. Modeling the impact of neurovascular coupling impairments on BOLD-based functional connectivity at rest. Archila-Meléndez ME; Sorg C; Preibisch C Neuroimage; 2020 Sep; 218():116871. PubMed ID: 32335261 [TBL] [Abstract][Full Text] [Related]
16. A study of the electro-haemodynamic coupling using simultaneously acquired intracranial EEG and fMRI data in humans. Murta T; Hu L; Tierney TM; Chaudhary UJ; Walker MC; Carmichael DW; Figueiredo P; Lemieux L Neuroimage; 2016 Nov; 142():371-380. PubMed ID: 27498370 [TBL] [Abstract][Full Text] [Related]
17. Task- and stimulus-related cortical networks in language production: Exploring similarity of MEG- and fMRI-derived functional connectivity. Liljeström M; Stevenson C; Kujala J; Salmelin R Neuroimage; 2015 Oct; 120():75-87. PubMed ID: 26169324 [TBL] [Abstract][Full Text] [Related]
18. Post-stimulus fMRI and EEG responses: Evidence for a neuronal origin hypothesised to be inhibitory. Mullinger KJ; Cherukara MT; Buxton RB; Francis ST; Mayhew SD Neuroimage; 2017 Aug; 157():388-399. PubMed ID: 28610902 [TBL] [Abstract][Full Text] [Related]
19. EEG default mode network in the human brain: spectral regional field powers. Chen AC; Feng W; Zhao H; Yin Y; Wang P Neuroimage; 2008 Jun; 41(2):561-74. PubMed ID: 18403217 [TBL] [Abstract][Full Text] [Related]
20. Extracting electrophysiological correlates of functional magnetic resonance imaging data using the canonical polyadic decomposition. Mann-Krzisnik D; Mitsis GD Hum Brain Mapp; 2022 Sep; 43(13):4045-4073. PubMed ID: 35567768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]