These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 38342262)
21. Nanocellulose with unique character converted directly from plants without intensive mechanical disintegration. Chen C; Xi P; Zhang S; Zhang L; Sun Y; Yao J; Fang K; Jiang Y Carbohydr Polym; 2022 Oct; 293():119730. PubMed ID: 35798426 [TBL] [Abstract][Full Text] [Related]
22. Green Solvent Processed Cellulose/Graphene Oxide Nanocomposite Films with Superior Mechanical, Thermal, and Ultraviolet Shielding Properties. Ahmed A; Adak B; Bansala T; Mukhopadhyay S ACS Appl Mater Interfaces; 2020 Jan; 12(1):1687-1697. PubMed ID: 31841299 [TBL] [Abstract][Full Text] [Related]
23. Production of lignin-containing cellulose nanofibers using deep eutectic solvents for UV-absorbing polymer reinforcement. Liu C; Li MC; Chen W; Huang R; Hong S; Wu Q; Mei C Carbohydr Polym; 2020 Oct; 246():116548. PubMed ID: 32747235 [TBL] [Abstract][Full Text] [Related]
24. A cellulose-based light-management film incorporated with benzoxazine resin/tannic acid exhibiting UV/blue light double blocking and enhanced mechanical property. Li S; Cui B; Jia X; Wang W; Cui Y; Ding J; Yang C; Fang Y; Song Y; Zhang X Int J Biol Macromol; 2024 Oct; 278(Pt 4):134461. PubMed ID: 39153676 [TBL] [Abstract][Full Text] [Related]
25. Highly transparent and thermally stable cellulose nanofibril films functionalized with colored metal ions for ultraviolet blocking activities. Yang W; Wang X; Gogoi P; Bian H; Dai H Carbohydr Polym; 2019 Jun; 213():10-16. PubMed ID: 30879648 [TBL] [Abstract][Full Text] [Related]
26. Antioxidant and UV-Blocking Leather-Inspired Nanocellulose-Based Films with High Wet Strength. Kriechbaum K; Bergström L Biomacromolecules; 2020 May; 21(5):1720-1728. PubMed ID: 31945294 [TBL] [Abstract][Full Text] [Related]
27. Cellulose-Based Films with Ultraviolet Shielding Performance Prepared Directly from Waste Corrugated Pulp. Xia G; Zhou Q; Xu Z; Zhang J; Ji X; Zhang J; Nawaz H; Wang J; Peng J Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641187 [TBL] [Abstract][Full Text] [Related]
28. A promising transparent and UV-shielding composite film prepared by aramid nanofibers and nanofibrillated cellulose. Luo J; Zhang M; Yang B; Liu G; Tan J; Nie J; Song S Carbohydr Polym; 2019 Jan; 203():110-118. PubMed ID: 30318194 [TBL] [Abstract][Full Text] [Related]
29. Direct conversion of raw wood to TEMPO-oxidized cellulose nanofibers. Kaffashsaie E; Yousefi H; Nishino T; Matsumoto T; Mashkour M; Madhoushi M; Kawaguchi H Carbohydr Polym; 2021 Jun; 262():117938. PubMed ID: 33838815 [TBL] [Abstract][Full Text] [Related]
30. Thermally-induced cellulose nanofibril films with near-complete ultraviolet-blocking and improved water resistance. Yang W; Gao Y; Zuo C; Deng Y; Dai H Carbohydr Polym; 2019 Nov; 223():115050. PubMed ID: 31426951 [TBL] [Abstract][Full Text] [Related]
32. Fabrication of cellulose/rectorite composite films for sustainable packaging. Jin L; Xu J; Yang Q; Huang Y; Zhang X; Yao W; Wang J; Zhao Y; Tian H; He M Int J Biol Macromol; 2023 Jan; 224():1471-1477. PubMed ID: 36330860 [TBL] [Abstract][Full Text] [Related]
33. Lignin-Cellulose Nanocrystals from Hemp Hurd as Light-Coloured Ultraviolet (UV) Functional Filler for Enhanced Performance of Polyvinyl Alcohol Nanocomposite Films. Zhang Y; Haque ANMA; Naebe M Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947774 [TBL] [Abstract][Full Text] [Related]
34. The Effect of Mechanochemical Treatment of the Cellulose on Characteristics of Nanocellulose Films. Barbash VA; Yaschenko OV; Alushkin SV; Kondratyuk AS; Posudievsky OY; Koshechko VG Nanoscale Res Lett; 2016 Dec; 11(1):410. PubMed ID: 27644236 [TBL] [Abstract][Full Text] [Related]
35. Fabrication of super-high transparent cellulose films with multifunctional performances via postmodification strategy. Qi Y; Lin S; Lan J; Zhan Y; Guo J; Shang J Carbohydr Polym; 2021 May; 260():117760. PubMed ID: 33712122 [TBL] [Abstract][Full Text] [Related]
36. Seeking materials from nature for interrupting eye damage: Ultraviolet to blue light blocking clear cellulose films enabled by curcumin. Fu Q; Qin Y; Zhang X; Sun L; Chang J Int J Biol Macromol; 2024 Nov; 279(Pt 2):135325. PubMed ID: 39236947 [TBL] [Abstract][Full Text] [Related]
37. Preparation and characterization of TEMPO-oxidized cellulose nanofibrils with ammonium carboxylate groups. Shimizu M; Fukuzumi H; Saito T; Isogai A Int J Biol Macromol; 2013 Aug; 59():99-104. PubMed ID: 23597708 [TBL] [Abstract][Full Text] [Related]
38. Cellulose Nanofibers from Olive Tree Pruning as Food Packaging Additive of a Biodegradable Film. Sánchez-Gutiérrez M; Bascón-Villegas I; Espinosa E; Carrasco E; Pérez-Rodríguez F; Rodríguez A Foods; 2021 Jul; 10(7):. PubMed ID: 34359453 [TBL] [Abstract][Full Text] [Related]
39. Facile fabrication of transparent lignin sphere/PVA nanocomposite films with excellent UV-shielding and high strength performance. Huang J; Guo Q; Zhu R; Liu Y; Xu F; Zhang X Int J Biol Macromol; 2021 Oct; 189():635-640. PubMed ID: 34454999 [TBL] [Abstract][Full Text] [Related]
40. Transparent cellulose/aramid nanofibers films with improved mechanical and ultraviolet shielding performance from waste cotton textiles by in-situ fabrication. Xia G; Zhou Q; Xu Z; Zhang J; Zhang J; Wang J; You J; Wang Y; Nawaz H Carbohydr Polym; 2021 Dec; 273():118569. PubMed ID: 34560980 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]