These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38342448)

  • 1. Immobilization of Pb in waste water and soil by tourmaline-biochar composites (TBs): Characteristics and mechanisms.
    Liu Y; Chen Y; Li Y; Chen L; Jiang H; Zhao M; Li H; Zhao C; Kang H; Zhou W
    Sci Total Environ; 2024 Apr; 920():170803. PubMed ID: 38342448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elaborating the mechanism of lead adsorption by biochar: Considering the impacts of water-washing and freeze-drying in preparing biochar.
    Liu Y; Chen Y; Li Y; Chen L; Jiang H; Jiang L; Yan H; Zhao M; Hou S; Zhao C; Chen Y
    Bioresour Technol; 2023 Oct; 386():129447. PubMed ID: 37399959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The efficiency of potato peel biochar for the adsorption and immobilization of heavy metals in contaminated soil.
    Gholami L; Rahimi G
    Int J Phytoremediation; 2023; 25(2):263-273. PubMed ID: 35579507
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency of lime, biochar, Fe containing biochar and composite amendments for Cd and Pb immobilization in a co-contaminated alluvial soil.
    Hamid Y; Tang L; Hussain B; Usman M; Gurajala HK; Rashid MS; He Z; Yang X
    Environ Pollut; 2020 Feb; 257():113609. PubMed ID: 31761594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-pyrolysis of alkali-fused fly ash and corn stover to synthesize biochar composites for remediating lead-contaminated soil.
    Ma Y; Shang X; Zhang Y; Chen W; Gao Y; Guo J; Zheng H; Xing B
    Environ Res; 2024 Jul; 252(Pt 2):118938. PubMed ID: 38649014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous immobilization of lead and arsenic and improved phosphorus availability in contaminated soil using biochar composite modified with hydroxyapatite and oxidation: Findings from a pot experiment.
    Ahmed W; Mehmood S; Mahmood M; Ali S; Núñez-Delgado A; Li W
    Environ Res; 2023 Oct; 235():116640. PubMed ID: 37453505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic insight and bifunctional study of a sulfide Fe
    Wang G; Peng C; Tariq M; Lin S; Wan J; Liang W; Zhang W; Zhang L
    Environ Pollut; 2022 Jan; 293():118587. PubMed ID: 34843845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxyapatite tailored hierarchical porous biochar composite immobilized Cd(II) and Pb(II) and mitigated their hazardous effects in contaminated water and soil.
    Wu W; Liu Z; Azeem M; Guo Z; Li R; Li Y; Peng Y; Ali EF; Wang H; Wang S; Rinklebe J; Shaheen SM; Zhang Z
    J Hazard Mater; 2022 Sep; 437():129330. PubMed ID: 35716571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-pyrolysis of corn stover with industrial coal ash for in situ efficient remediation of heavy metals in multi-polluted soil.
    Xia Y; Li Y; Sun Y; Miao W; Liu Z
    Environ Pollut; 2021 Nov; 289():117840. PubMed ID: 34426207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The sorption and short-term immobilization of lead and cadmium by nano-hydroxyapatite/biochar in aqueous solution and soil.
    Zhou C; Song X; Wang Y; Wang H; Ge S
    Chemosphere; 2022 Jan; 286(Pt 3):131810. PubMed ID: 34399259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of Different Organic Materials on Bio-availability of Cd, Pb in a Contaminated Greenhouse Soil].
    Zhou GY; Jiang HM; Yang JC; Zhang JF; Zhang SQ; Liang L
    Huan Jing Ke Xue; 2016 Oct; 37(10):4011-4019. PubMed ID: 29964439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the heavy metal adsorption and immobilization mechanisms of CaFe-layered double hydroxide corn straw biochar: Synthesis and application in a combined heavy metal-contaminated environment.
    Liang X; Su Y; Wang X; Liang C; Tang C; Wei J; Liu K; Ma J; Yu F; Li Y
    Chemosphere; 2023 Feb; 313():137467. PubMed ID: 36481172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative and modeled approach for three biochar materials in simultaneously preventing the migration and reducing the bioaccessibility of heavy metals in soil: Revealing immobilization mechanisms.
    Wang G; Tariq M; Liang W; Wan J; Peng C; Zhang W; Cao X; Lou Z
    Environ Pollut; 2022 Sep; 309():119792. PubMed ID: 35863701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remediation of lead and cadmium co-contaminated mining soil by phosphate-functionalized biochar: Performance, mechanism, and microbial response.
    Zhang J; Jiang Y; Ding C; Wang S; Zhao C; Yin W; Wang B; Yang R; Wang X
    Chemosphere; 2023 Sep; 334():138938. PubMed ID: 37182708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil lead immobilization by biochars in short-term laboratory incubation studies.
    Igalavithana AD; Kwon EE; Vithanage M; Rinklebe J; Moon DH; Meers E; Tsang DCW; Ok YS
    Environ Int; 2019 Jun; 127():190-198. PubMed ID: 30925262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of lead (Pb
    Li Y; Shaheen SM; Azeem M; Zhang L; Feng C; Peng J; Qi W; Liu J; Luo Y; Peng Y; Ali EF; Smith K; Rinklebe J; Zhang Z; Li R
    Environ Pollut; 2022 Sep; 308():119693. PubMed ID: 35777593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overlooked contributions of biochar-derived dissolved organic matter on the adsorption of Pb (Ⅱ): Impacts of fractionation and interfacial force.
    Huang X; Xu B; Zhu S; Ma F; Jin C
    J Hazard Mater; 2021 Oct; 420():126692. PubMed ID: 34329108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of carbon nanotube and biochar on bioavailability of Pb, Cu and Sb in multi-metal contaminated soil.
    Vithanage M; Herath I; Almaroai YA; Rajapaksha AU; Huang L; Sung JK; Lee SS; Ok YS
    Environ Geochem Health; 2017 Dec; 39(6):1409-1420. PubMed ID: 28332174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-year field experiments revealed the immobilization effect of natural aging biochar on typical heavy metals (Pb, Cu, Cd).
    Chen X; Jiang S; Wu J; Yi X; Dai G; Shu Y
    Sci Total Environ; 2024 Feb; 912():169384. PubMed ID: 38104846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bamboo-biochar and hydrothermally treated-coal mediated geochemical speciation, transformation and uptake of Cd, Cr, and Pb in a polymetal(iod)s-contaminated mine soil.
    Mujtaba Munir MA; Liu G; Yousaf B; Ali MU; Cheema AI; Rashid MS; Rehman A
    Environ Pollut; 2020 Oct; 265(Pt A):114816. PubMed ID: 32473507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.