These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38342467)

  • 21. Functionalization of seaweed bloom-derived Ulvan using response surface methodology with application in flocculation of oil-in-water pollution.
    Ennackal DJ; Odaneth AA
    Environ Pollut; 2024 Mar; 344():123429. PubMed ID: 38278406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation and application of a novel bioflocculant by two strains of Rhizopus sp. using potato starch wastewater as nutrilite.
    Pu SY; Qin LL; Che JP; Zhang BR; Xu M
    Bioresour Technol; 2014 Jun; 162():184-91. PubMed ID: 24747673
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellulose-based thermosensitive supramolecular hydrogel for phenol removal from polluted water.
    Guo M; Wang J; Zhang C; Zhang X; Xia C; Lin H; Lin CY; Lam SS
    Environ Res; 2022 Nov; 214(Pt 2):113863. PubMed ID: 35841969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production and Characterization of a Bioflocculant Produced by
    Abu Tawila ZM; Ismail S; Dadrasnia A; Usman MM
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30340415
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Extracellular polymeric substances of bacteria and their potential environmental applications.
    More TT; Yadav JS; Yan S; Tyagi RD; Surampalli RY
    J Environ Manage; 2014 Nov; 144():1-25. PubMed ID: 24907407
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrochar-nanoparticle integration for arsenic removal from wastewater: Challenges, possible solutions, and future horizon.
    Khan Khanzada A; Al-Hazmi HE; Śniatała B; Muringayil Joseph T; Majtacz J; Abdulrahman SAM; Albaseer SS; Kurniawan TA; Rahimi-Ahar Z; Habibzadeh S; Mąkinia J
    Environ Res; 2023 Dec; 238(Pt 1):117164. PubMed ID: 37722579
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization and Application of Bioflocculant Passivated Copper Nanoparticles in the Wastewater Treatment.
    Dlamini NG; Basson AK; Pullabhotla VSR
    Int J Environ Res Public Health; 2019 Jun; 16(12):. PubMed ID: 31226768
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioflocculation of pollutants in wastewater using flocculant derived from Providencia huaxiensis OR794369.1.
    Selepe TN; Maliehe TS
    BMC Microbiol; 2024 Jan; 24(1):39. PubMed ID: 38281910
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Environmental applications of microbial extracellular polymeric substance (EPS): A review.
    Siddharth T; Sridhar P; Vinila V; Tyagi RD
    J Environ Manage; 2021 Jun; 287():112307. PubMed ID: 33798774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Global research trends on bioflocculant potentials in wastewater remediation from 1990 to 2019 using a bibliometric approach.
    Okaiyeto K; Ekundayo TC; Okoh AI
    Lett Appl Microbiol; 2020 Dec; 71(6):567-579. PubMed ID: 32780872
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wastewater treatment plant effluent and microfiber pollution: focus on industry-specific wastewater.
    Ramasamy R; Aragaw TA; Balasaraswathi Subramanian R
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):51211-51233. PubMed ID: 35606585
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters.
    Verma AK; Dash RR; Bhunia P
    J Environ Manage; 2012 Jan; 93(1):154-68. PubMed ID: 22054582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfiber pollution from Dhobi Ghats (open air laundry centers) and commercial laundries in a north Indian city.
    Bhat ZM; Gani KM
    Environ Sci Pollut Res Int; 2024 Feb; 31(8):12161-12173. PubMed ID: 38225494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advances in the role of natural gums-based hydrogels in water purification, desalination and atmospheric-water harvesting.
    Mittal H; Al Alili A; Alhassan SM; Naushad M
    Int J Biol Macromol; 2022 Dec; 222(Pt B):2888-2921. PubMed ID: 36240888
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent advances in polysaccharide bio-based flocculants.
    Salehizadeh H; Yan N; Farnood R
    Biotechnol Adv; 2018; 36(1):92-119. PubMed ID: 28993221
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Removal of trace nonylphenol from water in the coexistence of suspended inorganic particles and NOMs by using a cellulose-based flocculant.
    Yang Z; Ren K; Guibal E; Jia S; Shen J; Zhang X; Yang W
    Chemosphere; 2016 Oct; 161():482-490. PubMed ID: 27459160
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of cellulose nanofibers to remove water-based flexographic inks from wastewaters.
    Balea A; Monte MC; de la Fuente E; Negro C; Blanco Á
    Environ Sci Pollut Res Int; 2017 Feb; 24(5):5049-5059. PubMed ID: 28000073
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coagulative removal of microplastics from aqueous matrices: Recent progresses and future perspectives.
    Girish N; Parashar N; Hait S
    Sci Total Environ; 2023 Nov; 899():165723. PubMed ID: 37482362
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anthropogenic microfibers are highly abundant at the Burdwood Bank seamount, a protected sub-Antarctic environment in the Southwestern Atlantic Ocean.
    Di Mauro R; Castillo S; Pérez A; Iachetti CM; Silva L; Tomba JP; Chiesa IL
    Environ Pollut; 2022 Aug; 306():119364. PubMed ID: 35489539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phycoremediation of wastewater for pollutant removal: A green approach to environmental protection and long-term remediation.
    Dayana Priyadharshini S; Suresh Babu P; Manikandan S; Subbaiya R; Govarthanan M; Karmegam N
    Environ Pollut; 2021 Dec; 290():117989. PubMed ID: 34433126
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.