These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 38342515)
1. Influence of starch-protein interactions on the digestibility and chemical properties of a 3D-printed food matrix based on salmon by-product proteins. Carvajal-Mena N; Tabilo-Munizaga G; Pérez-Won M; Herrera-Lavados C; Moreno-Osorio L Food Res Int; 2024 Mar; 179():114035. PubMed ID: 38342515 [TBL] [Abstract][Full Text] [Related]
2. Three-Dimensional Printing Parameter Optimization for Salmon Gelatin Gels Using Artificial Neural Networks and Response Surface Methodology: Influence on Physicochemical and Digestibility Properties. Carvajal-Mena N; Tabilo-Munizaga G; Saldaña MDA; Pérez-Won M; Herrera-Lavados C; Lemus-Mondaca R; Moreno-Osorio L Gels; 2023 Sep; 9(9):. PubMed ID: 37754446 [TBL] [Abstract][Full Text] [Related]
3. Effect of starch addition on the physicochemical properties, molecular interactions, structures, and in vitro digestibility of the plant-based egg analogues. Lu Z; Liu Y; Lee YEJ; Chan A; Lee PR; Yang H Food Chem; 2023 Mar; 403():134390. PubMed ID: 36179634 [TBL] [Abstract][Full Text] [Related]
4. Effect of plasma-activated water on the quality of wheat starch gel-forming 3D printed samples. Ma S; Zhang M; Wang X; Yang Y; He L; Deng J; Jiang H Int J Biol Macromol; 2024 Aug; 274(Pt 1):133552. PubMed ID: 39025747 [TBL] [Abstract][Full Text] [Related]
5. Starch concentration is an important factor for controlling its digestibility during hot-extrusion 3D printing. Zhang Z; Zheng B; Tang Y; Chen L Food Chem; 2022 Jun; 379():132180. PubMed ID: 35065499 [TBL] [Abstract][Full Text] [Related]
6. 3D printing performance of gels from wheat starch, flour and whole meal. Zheng L; Liu J; Liu R; Xing Y; Jiang H Food Chem; 2021 Sep; 356():129546. PubMed ID: 33812193 [TBL] [Abstract][Full Text] [Related]
7. Investigation of sweet potato starch as a structural enhancer for three-dimensional printing of Scomberomorus niphonius surimi. Dong X; Huang Y; Pan Y; Wang K; Prakash S; Zhu B J Texture Stud; 2019 Aug; 50(4):316-324. PubMed ID: 30847926 [TBL] [Abstract][Full Text] [Related]
8. Insights into the relationship between structure and rheological properties of starch gels in hot-extrusion 3D printing. Zeng X; Chen H; Chen L; Zheng B Food Chem; 2021 Apr; 342():128362. PubMed ID: 33077283 [TBL] [Abstract][Full Text] [Related]
9. Effect of ferulic acid incorporation on structural, rheological, and digestive properties of hot-extrusion 3D-printed rice starch. Li Z; Liang J; Lu L; Liu L; Wang L Int J Biol Macromol; 2024 May; 266(Pt 2):131279. PubMed ID: 38561115 [TBL] [Abstract][Full Text] [Related]
10. Lutein encapsulation into dual-layered starch/zein gels using 3D food printing: Improved storage stability and in vitro bioaccessibility. Ahmadzadeh S; Ubeyitogullari A Int J Biol Macromol; 2024 May; 266(Pt 2):131305. PubMed ID: 38569990 [TBL] [Abstract][Full Text] [Related]
11. The effect of gel structure on the in vitro digestibility of wheat starch-Mesona chinensis polysaccharide gels. Yuris A; Goh KKT; Hardacre AK; Matia-Merino L Food Funct; 2019 Jan; 10(1):250-258. PubMed ID: 30547164 [TBL] [Abstract][Full Text] [Related]
12. Effects of rice protein, soy isolate protein, and whey concentrate protein on the digestibility and physicochemical properties of extruded rice starch. Bao H; Liu Q; Yang Y; Xu L; Zhu K; Jin Z; Jiao A J Food Sci; 2023 Mar; 88(3):1159-1171. PubMed ID: 36704898 [TBL] [Abstract][Full Text] [Related]
13. Co-encapsulation of hydrophilic and hydrophobic bioactives stabilized in nanostarch-assisted emulsion for inner core gel of coaxial 3D printing. Niu R; Zhao R; Hu H; Yu X; Huang Z; Cheng H; Yin J; Zhou J; Xu E; Liu D Carbohydr Polym; 2024 Nov; 343():122499. PubMed ID: 39174108 [TBL] [Abstract][Full Text] [Related]
14. Effects of starch-fatty acid complexes with different fatty acid chain lengths and degrees of saturation on the rheological and 3D printing properties of corn starch. Cheng Y; Gao W; Kang X; Wang J; Yu B; Guo L; Zhao M; Yuan C; Cui B Food Chem; 2024 Mar; 436():137718. PubMed ID: 37844512 [TBL] [Abstract][Full Text] [Related]
15. Effect of Ca Li G; Zhan J; Hu Z; Huang J; Xu E; Yuan C; Chen J; Yao Q; Hu Y J Sci Food Agric; 2023 Sep; 103(12):5927-5937. PubMed ID: 37139663 [TBL] [Abstract][Full Text] [Related]
16. Investigation of the mechanism of different 3D printing performance of starch and whole flour gels from tuber crops. Ji S; Zeng Q; Xu M; Li Y; Xu T; Zhong Y; Liu Y; Wang F; Lu B Int J Biol Macromol; 2023 Jun; 241():124448. PubMed ID: 37060974 [TBL] [Abstract][Full Text] [Related]
17. Effect of starch-catechin interaction on regulation of starch digestibility during hot-extrusion 3D printing: Structural analysis and simulation study. Zheng B; Liu Z; Chen L; Qiu Z; Li T Food Chem; 2022 Nov; 393():133394. PubMed ID: 35688087 [TBL] [Abstract][Full Text] [Related]
18. In vitro digestion of salmon: Influence of processing and intestinal conditions on macronutrients digestibility. Asensio-Grau A; Calvo-Lerma J; Heredia A; Andrés A Food Chem; 2021 Apr; 342():128387. PubMed ID: 33097324 [TBL] [Abstract][Full Text] [Related]
19. Development of soy protein isolate gels added with Liu FW; Song XX; Bian SG; Huang XJ; Yin JY; Nie SP Food Funct; 2024 Jun; 15(11):5868-5881. PubMed ID: 38727142 [TBL] [Abstract][Full Text] [Related]
20. Control of starch-lipid interactions on starch digestibility during hot-extrusion 3D printing for starchy foods. Liu Z; Chen L; Zheng B Food Funct; 2022 May; 13(9):5317-5326. PubMed ID: 35445679 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]