BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38342834)

  • 1. Valorization of sugarcane bagasse with in situ grown MoS
    Ranjan R; Bhatt SB; Rai R; Sharma SK; Verma M; Dhar P
    Environ Sci Pollut Res Int; 2024 Mar; 31(11):17494-17510. PubMed ID: 38342834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal and degradation of mixed dye pollutants by integrated adsorption-photocatalysis technique using 2-D MoS
    Chandrabose G; Dey A; Gaur SS; Pitchaimuthu S; Jagadeesan H; Braithwaite NSJ; Selvaraj V; Kumar V; Krishnamurthy S
    Chemosphere; 2021 Sep; 279():130467. PubMed ID: 33857651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ grown bacterial cellulose/MoS
    Shen H; Liao S; Jiang C; Zhang J; Wei Q; Ghiladi RA; Wang Q
    Carbohydr Polym; 2022 Feb; 277():118853. PubMed ID: 34893262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial Nanocellulose/MoS
    Ferreira-Neto EP; Ullah S; da Silva TCA; Domeneguetti RR; Perissinotto AP; de Vicente FS; Rodrigues-Filho UP; Ribeiro SJL
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41627-41643. PubMed ID: 32809794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutual effects behind the simultaneous removal of toxic metals and cationic dyes by interlayer-expanded MoS
    Wu Z; Duan Q; Li X; Li J
    Environ Sci Pollut Res Int; 2019 Oct; 26(30):31344-31353. PubMed ID: 31471849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sugarcane Bagasse as an Efficient Biosorbent for Methylene Blue Removal: Kinetics, Isotherms and Thermodynamics.
    Andrade Siqueira TC; Zanette da Silva I; Rubio AJ; Bergamasco R; Gasparotto F; Paccola EAS; Yamaguchi NU
    Int J Environ Res Public Health; 2020 Jan; 17(2):. PubMed ID: 31947663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of sugarcane bagasse-based activated carbon for formaldehyde gas removal from potted plants exposure chamber.
    Mohamed EF; El-Hashemy MA; Abdel-Latif NM; Shetaya WH
    J Air Waste Manag Assoc; 2015 Dec; 65(12):1413-20. PubMed ID: 26606041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agricultural solid waste for sorption of metal ions: part I-characterization and use of lettuce roots and sugarcane bagasse for Cu(II), Fe(II), Zn(II), and Mn(II) sorption from aqueous medium.
    Milani PA; Debs KB; Labuto G; Carrilho ENVM
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):35895-35905. PubMed ID: 29520545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanomodified sugarcane bagasse biosorbent: synthesis, characterization, and application for Cu(II) removal from aqueous medium.
    Carvalho JTT; Milani PA; Consonni JL; Labuto G; Carrilho ENVM
    Environ Sci Pollut Res Int; 2021 May; 28(19):24744-24755. PubMed ID: 33131038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. S defect-rich MoS
    Zhao Y; Xu Z; Li M; Zhou L; Liu M; Yang D; Zeng J; Xie R; Hu W; Dong F
    Chemosphere; 2024 Apr; 354():141649. PubMed ID: 38458356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating artificial neural networks and response surface methodology for predictive modeling and mechanistic insights into the detoxification of hazardous MB and CV dyes using Saccharum officinarum L. biomass.
    Kumari S; Chowdhry J; Sharma P; Agarwal S; Chandra Garg M
    Chemosphere; 2023 Dec; 344():140262. PubMed ID: 37793550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of mercury ions from wastewater aqueous solution by amide functionalized cellulose from sugarcane bagasse.
    Sun N; Wen X; Yan C
    Int J Biol Macromol; 2018 Mar; 108():1199-1206. PubMed ID: 29126940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MoS
    Amaral LO; Daniel-da-Silva AL
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(methacrylic acid)-modified sugarcane bagasse for enhanced adsorption of cationic dye.
    Xing Y; Wang G
    Environ Technol; 2009 May; 30(6):611-9. PubMed ID: 19603706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recoverable and reusable visible-light photocatalytic performance of CVD grown atomically thin MoS
    Sindhu AS; Shinde NB; Harish S; Navaneethan M; Eswaran SK
    Chemosphere; 2022 Jan; 287(Pt 4):132347. PubMed ID: 34582929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review on modified sugarcane bagasse biosorbent for removal of dyes.
    Aruna ; Bagotia N; Sharma AK; Kumar S
    Chemosphere; 2021 Apr; 268():129309. PubMed ID: 33352516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption-biodegradation coupled remediation process for the efficient removal of a textile dye through chemically functionalized sugarcane bagasse.
    Gita S; Shukla SP; Deshmukhe G; Singh AR; Choudhury TG; Singh AK
    Water Environ Res; 2021 Oct; 93(10):2223-2236. PubMed ID: 34076310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carboxylate-functionalized sugarcane bagasse as an effective and renewable adsorbent to remove methylene blue.
    Wang SN; Li P; Gu JJ; Liang H; Wu JH
    Water Sci Technol; 2017 Apr; 2017(1):300-309. PubMed ID: 29698244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The antibiotic activity and mechanisms of sugarcane (Saccharum officinarum L.) bagasse extract against food-borne pathogens.
    Zhao Y; Chen M; Zhao Z; Yu S
    Food Chem; 2015 Oct; 185():112-8. PubMed ID: 25952848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency of sugarcane bagasse-based sorbents for oil removal from engine washing wastewater.
    Guilharduci VV; Martelli PB; Gorgulho HF
    Water Sci Technol; 2017 Jan; 75(1-2):173-181. PubMed ID: 28067657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.