These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38343220)

  • 1. An MRI-Based Deep Transfer Learning Radiomics Nomogram to Predict Ki-67 Proliferation Index of Meningioma.
    Duan C; Hao D; Cui J; Wang G; Xu W; Li N; Liu X
    J Imaging Inform Med; 2024 Apr; 37(2):510-519. PubMed ID: 38343220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constructing a Deep Learning Radiomics Model Based on X-ray Images and Clinical Data for Predicting and Distinguishing Acute and Chronic Osteoporotic Vertebral Fractures: A Multicenter Study.
    Zhang J; Xia L; Tang J; Xia J; Liu Y; Zhang W; Liu J; Liang Z; Zhang X; Zhang L; Tang G
    Acad Radiol; 2024 May; 31(5):2011-2026. PubMed ID: 38016821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiation of acute and chronic vertebral compression fractures using conventional CT based on deep transfer learning features and hand-crafted radiomics features.
    Zhang J; Liu J; Liang Z; Xia L; Zhang W; Xing Y; Zhang X; Tang G
    BMC Musculoskelet Disord; 2023 Mar; 24(1):165. PubMed ID: 36879285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A radiomics nomogram for predicting the meningioma grade based on enhanced
    Duan C; Zhou X; Wang J; Li N; Liu F; Gao S; Liu X; Xu W
    Br J Radiol; 2022 Sep; 95(1137):20220141. PubMed ID: 35816518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-parametric MRI-based machine learning model for prediction of WHO grading in patients with meningiomas.
    Zhao Z; Nie C; Zhao L; Xiao D; Zheng J; Zhang H; Yan P; Jiang X; Zhao H
    Eur Radiol; 2024 Apr; 34(4):2468-2479. PubMed ID: 37812296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of ultrasound radiomics features and clinical factors: A nomogram model for identifying the Ki-67 status in patients with breast carcinoma.
    Wu J; Fang Q; Yao J; Ge L; Hu L; Wang Z; Jin G
    Front Oncol; 2022; 12():979358. PubMed ID: 36276108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intratumoral and Peritumoral Analysis of Mammography, Tomosynthesis, and Multiparametric MRI for Predicting Ki-67 Level in Breast Cancer: a Radiomics-Based Study.
    Jiang T; Song J; Wang X; Niu S; Zhao N; Dong Y; Wang X; Luo Y; Jiang X
    Mol Imaging Biol; 2022 Aug; 24(4):550-559. PubMed ID: 34904187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning algorithm-based multimodal MRI radiomics and pathomics data improve prediction of bone metastases in primary prostate cancer.
    Zhang YF; Zhou C; Guo S; Wang C; Yang J; Yang ZJ; Wang R; Zhang X; Zhou FH
    J Cancer Res Clin Oncol; 2024 Feb; 150(2):78. PubMed ID: 38316655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep-learning-based radiomics of intratumoral and peritumoral MRI images to predict the pathological features of adjuvant radiotherapy in early-stage cervical squamous cell carcinoma.
    Zhang XF; Wu HY; Liang XW; Chen JL; Li J; Zhang S; Liu Z
    BMC Womens Health; 2024 Mar; 24(1):182. PubMed ID: 38504245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting N2 lymph node metastasis in presurgical stage I-II non-small cell lung cancer using multiview radiomics and deep learning method.
    Zhang H; Liao M; Guo Q; Chen J; Wang S; Liu S; Xiao F
    Med Phys; 2023 Apr; 50(4):2049-2060. PubMed ID: 36563341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiparametric MRI-based radiomics approach with deep transfer learning for preoperative prediction of Ki-67 status in sinonasal squamous cell carcinoma.
    Lin N; Shi Y; Ye M; Wang L; Sha Y
    Front Oncol; 2024; 14():1305836. PubMed ID: 38939344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preoperative Prediction of Meningioma Consistency
    Zhai Y; Song D; Yang F; Wang Y; Jia X; Wei S; Mao W; Xue Y; Wei X
    Front Oncol; 2021; 11():657288. PubMed ID: 34123812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diagnostic nomogram based on intralesional and perilesional radiomics features and clinical factors of clinically significant prostate cancer.
    Zhang H; Li X; Zhang Y; Huang C; Wang Y; Yang P; Duan S; Mao N; Xie H
    J Magn Reson Imaging; 2021 May; 53(5):1550-1558. PubMed ID: 33851471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preoperative Prediction of Perineural Invasion Status of Rectal Cancer Based on Radiomics Nomogram of Multiparametric Magnetic Resonance Imaging.
    Zhang Y; Peng J; Liu J; Ma Y; Shu Z
    Front Oncol; 2022; 12():828904. PubMed ID: 35480114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CT radiomics nomogram for prediction of the Ki-67 index in head and neck squamous cell carcinoma.
    Zheng YM; Chen J; Zhang M; Wu ZJ; Tang GZ; Zhang Y; Dong C
    Eur Radiol; 2023 Mar; 33(3):2160-2170. PubMed ID: 36222864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility analysis of magnetic resonance imaging-based radiomics features for preoperative prediction of nuclear grading of ductal carcinoma in situ.
    Zhao MR; Ma WJ; Song XC; Li ZJ; Shao ZZ; Lu H; Zhao R; Guo YJ; Ye ZX; Liu PF
    Gland Surg; 2023 Sep; 12(9):1209-1223. PubMed ID: 37842532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting peritumoral edema development after gamma knife radiosurgery of meningiomas using machine learning methods: a multicenter study.
    Li X; Lu Y; Liu L; Wang D; Zhao Y; Mei N; Geng D; Ma X; Zheng W; Duan S; Wu PY; Wen H; Tan Y; Sun X; Sun S; Li Z; Yu T; Yin B
    Eur Radiol; 2023 Dec; 33(12):8912-8924. PubMed ID: 37498381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MRI-Based Radiomics Nomogram: Prediction of Axillary Non-Sentinel Lymph Node Metastasis in Patients With Sentinel Lymph Node-Positive Breast Cancer.
    Qiu Y; Zhang X; Wu Z; Wu S; Yang Z; Wang D; Le H; Mao J; Dai G; Tian X; Zhou R; Huang J; Hu L; Shen J
    Front Oncol; 2022; 12():811347. PubMed ID: 35296027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intra- and Peritumoral Based Radiomics for Assessment of Lymphovascular Invasion in Invasive Breast Cancer.
    Jiang W; Meng R; Cheng Y; Wang H; Han T; Qu N; Yu T; Hou Y; Xu S
    J Magn Reson Imaging; 2024 Feb; 59(2):613-625. PubMed ID: 37199241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of a combined radiomics nomogram based on CE-CT in the preoperative prediction of thymomas risk categorization.
    Dong W; Xiong S; Lei P; Wang X; Liu H; Liu Y; Zou H; Fan B; Qiu Y
    Front Oncol; 2022; 12():944005. PubMed ID: 36081562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.