These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 38343248)
1. MRI-Based Machine Learning Fusion Models to Distinguish Encephalitis and Gliomas. Zheng F; Yin P; Yang L; Wang Y; Hao W; Hao Q; Chen X; Hong N J Imaging Inform Med; 2024 Apr; 37(2):653-665. PubMed ID: 38343248 [TBL] [Abstract][Full Text] [Related]
2. Concomitant Prediction of the Ki67 and PIT-1 Expression in Pituitary Adenoma Using Different Radiomics Models. Liu F; Zang Y; Feng L; Shi X; Wu W; Liu X; Song Y; Xu J; Gui S; Chen X J Imaging Inform Med; 2024 May; ():. PubMed ID: 38750186 [TBL] [Abstract][Full Text] [Related]
3. Differentiation of benign and malignant parotid gland tumors based on the fusion of radiomics and deep learning features on ultrasound images. Wang Y; Gao J; Yin Z; Wen Y; Sun M; Han R Front Oncol; 2024; 14():1384105. PubMed ID: 38803533 [TBL] [Abstract][Full Text] [Related]
4. Comparison of Different Fusion Radiomics for Predicting Benign and Malignant Sacral Tumors: A Pilot Study. Zheng F; Yin P; Liang K; Liu T; Wang Y; Hao W; Hao Q; Hong N J Imaging Inform Med; 2024 Oct; 37(5):2415-2427. PubMed ID: 38717515 [TBL] [Abstract][Full Text] [Related]
5. Constructing a Deep Learning Radiomics Model Based on X-ray Images and Clinical Data for Predicting and Distinguishing Acute and Chronic Osteoporotic Vertebral Fractures: A Multicenter Study. Zhang J; Xia L; Tang J; Xia J; Liu Y; Zhang W; Liu J; Liang Z; Zhang X; Zhang L; Tang G Acad Radiol; 2024 May; 31(5):2011-2026. PubMed ID: 38016821 [TBL] [Abstract][Full Text] [Related]
6. Ultrasound deep learning radiomics and clinical machine learning models to predict low nuclear grade, ER, PR, and HER2 receptor status in pure ductal carcinoma Zhu M; Kuang Y; Jiang Z; Liu J; Zhang H; Zhao H; Luo H; Chen Y; Peng Y Gland Surg; 2024 Apr; 13(4):512-527. PubMed ID: 38720675 [TBL] [Abstract][Full Text] [Related]
7. Multi-feature Fusion Network on Gray Scale Ultrasonography: Effective Differentiation of Adenolymphoma and Pleomorphic Adenoma. Mao Y; Jiang LP; Wang JL; Diao YH; Chen FQ; Zhang WP; Chen L; Liu ZX Acad Radiol; 2024 Nov; 31(11):4396-4407. PubMed ID: 38871552 [TBL] [Abstract][Full Text] [Related]
8. Development and Validation of Contrast-Enhanced CT-Based Deep Transfer Learning and Combined Clinical-Radiomics Model to Discriminate Thymomas and Thymic Cysts: AÂ Multicenter Study. Yang Y; Cheng J; Peng Z; Yi L; Lin Z; He A; Jin M; Cui C; Liu Y; Zhong Q; Zuo M Acad Radiol; 2024 Apr; 31(4):1615-1628. PubMed ID: 37949702 [TBL] [Abstract][Full Text] [Related]
9. Comparative assessment of the capability of machine learning-based radiomic models for predicting omental metastasis in locally advanced gastric cancer. Wu A; Luo L; Zeng Q; Wu C; Shu X; Huang P; Wang Z; Hu T; Feng Z; Tu Y; Zhu Y; Cao Y; Li Z Sci Rep; 2024 Jul; 14(1):16208. PubMed ID: 39003337 [TBL] [Abstract][Full Text] [Related]
10. Ultrasound-based deep learning radiomics nomogram for differentiating mass mastitis from invasive breast cancer. Wu L; Li S; Wu C; Wu S; Lin Y; Wei D BMC Med Imaging; 2024 Jul; 24(1):189. PubMed ID: 39060962 [TBL] [Abstract][Full Text] [Related]
11. Deep-learning and conventional radiomics to predict Zhang H; Fan X; Zhang J; Wei Z; Feng W; Hu Y; Ni J; Yao F; Zhou G; Wan C; Zhang X; Wang J; Liu Y; You Y; Yu Y Front Oncol; 2023; 13():1143688. PubMed ID: 37711207 [TBL] [Abstract][Full Text] [Related]
12. A single sequence MRI-based deep learning radiomics model in the diagnosis of early osteonecrosis of femoral head. Alkhatatbeh T; Alkhatatbeh A; Li X; Wang W Front Bioeng Biotechnol; 2024; 12():1471692. PubMed ID: 39280340 [TBL] [Abstract][Full Text] [Related]
13. Using machine learning-based radiomics to differentiate between glioma and solitary brain metastasis from lung cancer and its subtypes. Zhu FY; Sun YF; Yin XP; Zhang Y; Xing LH; Ma ZP; Xue LY; Wang JN Discov Oncol; 2023 Dec; 14(1):224. PubMed ID: 38055122 [TBL] [Abstract][Full Text] [Related]
14. Machine learning model to preoperatively predict T2/T3 staging of laryngeal and hypopharyngeal cancer based on the CT radiomic signature. Liu Q; Liu S; Mao Y; Kang X; Yu M; Chen G Eur Radiol; 2024 Aug; 34(8):5349-5359. PubMed ID: 38206403 [TBL] [Abstract][Full Text] [Related]
15. Predicting Histopathological Grading of Adult Gliomas Based On Preoperative Conventional Multimodal MRI Radiomics: A Machine Learning Model. Du P; Liu X; Wu X; Chen J; Cao A; Geng D Brain Sci; 2023 Jun; 13(6):. PubMed ID: 37371390 [TBL] [Abstract][Full Text] [Related]
16. CT-based deep learning radiomics nomogram for the prediction of pathological grade in bladder cancer: a multicenter study. Song H; Yang S; Yu B; Li N; Huang Y; Sun R; Wang B; Nie P; Hou F; Huang C; Zhang M; Wang H Cancer Imaging; 2023 Sep; 23(1):89. PubMed ID: 37723572 [TBL] [Abstract][Full Text] [Related]
17. Machine learning model based on enhanced CT radiomics for the preoperative prediction of lymphovascular invasion in esophageal squamous cell carcinoma. Wang Y; Bai G; Huang M; Chen W Front Oncol; 2024; 14():1308317. PubMed ID: 38549935 [TBL] [Abstract][Full Text] [Related]
18. Deep learning-based radiomic nomogram to predict risk categorization of thymic epithelial tumors: A multicenter study. Zhou H; Bai HX; Jiao Z; Cui B; Wu J; Zheng H; Yang H; Liao W Eur J Radiol; 2023 Nov; 168():111136. PubMed ID: 37832194 [TBL] [Abstract][Full Text] [Related]
19. A comprehensive radiopathological nomogram for the prediction of pathological staging in gastric cancer using CT-derived and WSI-based features. Tan Y; Feng LJ; Huang YH; Xue JW; Long LL; Feng ZB Transl Oncol; 2024 Feb; 40():101864. PubMed ID: 38141376 [TBL] [Abstract][Full Text] [Related]
20. Deep Learning Radiomics Nomogram to Predict Lung Metastasis in Soft-Tissue Sarcoma: A Multi-Center Study. Liang HY; Yang SF; Zou HM; Hou F; Duan LS; Huang CC; Xu JX; Liu SL; Hao DP; Wang HX Front Oncol; 2022; 12():897676. PubMed ID: 35814362 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]