These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38343573)

  • 1. Evolution of larval gregariousness is associated with host plant specialisation, but not host morphology, in Heliconiini butterflies.
    McLellan CF; Montgomery SH
    Ecol Evol; 2024 Feb; 14(2):e11002. PubMed ID: 38343573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Warning Coloration, Body Size, and the Evolution of Gregarious Behavior in Butterfly Larvae.
    McLellan CF; Cuthill IC; Montgomery SH
    Am Nat; 2023 Jul; 202(1):64-77. PubMed ID: 37384762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the Role of Developmental and Environmental Factors in Chemical Defence Variation in Heliconiini Butterflies.
    Sculfort O; McClure M; Nay B; Elias M; Llaurens V
    J Chem Ecol; 2021 Jun; 47(6):577-587. PubMed ID: 34003420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns of host plant use do not explain mushroom body expansion in Heliconiini butterflies.
    Young FJ; Monllor M; McMillan WO; Montgomery SH
    Proc Biol Sci; 2023 Jul; 290(2003):20231155. PubMed ID: 37491961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seasonal Patterns of Host Plant Use in an Assemblage of Heliconiini Butterflies (Lepidoptera: Nymphalidae) in a Neotropical forest.
    Ramos RR; Francini RB; Habib MEEM; Freitas AVL
    Neotrop Entomol; 2021 Jun; 50(3):358-365. PubMed ID: 33683560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal ecology of gregarious and solitary nettle-feeding nymphalid butterfly larvae.
    Bryant SR; Thomas CD; Bale JS
    Oecologia; 2000 Jan; 122(1):1-10. PubMed ID: 28307946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gregariousness in lepidopteran larvae.
    Qian C; Wen C; Guo X; Yang X; Wen X; Ma T; Wang C
    Insect Sci; 2024 Jan; ():. PubMed ID: 38214204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pattern variation is linked to anti-predator coloration in butterfly larvae.
    McLellan CF; Cuthill IC; Montgomery SH
    Proc Biol Sci; 2023 Jun; 290(2001):20230811. PubMed ID: 37357867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competitive interactions between parasitoid larvae and the evolution of gregarious development.
    Pexton JJ; Mayhew PJ
    Oecologia; 2004 Sep; 141(1):179-90. PubMed ID: 15258849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interspecific Differences in the Larval Performance of Pieris Butterflies (Lepidoptera: Pieridae) Are Associated with Differences in the Glucosinolate Profiles of Host Plants.
    Okamura Y; Tsuzuki N; Kuroda S; Sato A; Sawada Y; Hirai MY; Murakami M
    J Insect Sci; 2019 May; 19(3):. PubMed ID: 31039584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endogenous toxins and the coupling of gregariousness to conspicuousness in Argidae and Pergidae sawflies.
    Boevé JL; Nyman T; Shinohara A; Schmidt S
    Sci Rep; 2018 Dec; 8(1):17636. PubMed ID: 30518939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host plant preference and performance of the sibling species of butterflies Leptidea sinapis and Leptidea reali: a test of the trade-off hypothesis for food specialisation.
    Friberg M; Wiklund C
    Oecologia; 2009 Feb; 159(1):127-37. PubMed ID: 19002503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies of chemical anti-predator defences in leaf beetles: is sequestration of plant toxins less costly than de novo synthesis?
    Zvereva EL; Zverev V; Kruglova OY; Kozlov MV
    Oecologia; 2017 Jan; 183(1):93-106. PubMed ID: 27718063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The arms race between heliconiine butterflies and Passiflora plants - new insights on an ancient subject.
    de Castro ÉCP; Zagrobelny M; Cardoso MZ; Bak S
    Biol Rev Camb Philos Soc; 2018 Feb; 93(1):555-573. PubMed ID: 28901723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenotypic biomarkers of climatic impacts on declining insect populations: A key role for decadal drought, thermal buffering and amplification effects and host plant dynamics.
    Carnicer J; Stefanescu C; Vives-Ingla M; López C; Cortizas S; Wheat C; Vila R; Llusià J; Peñuelas J
    J Anim Ecol; 2019 Mar; 88(3):376-391. PubMed ID: 30480313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EVOLUTION OF GREGARIOUSNESS IN APOSEMATIC BUTTERFLY LARVAE: A PHYLOGENETIC ANALYSIS.
    Sillén-Tullberg B
    Evolution; 1988 Mar; 42(2):293-305. PubMed ID: 28567849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation of chemical compounds in wild Heliconiini reveals ecological factors involved in the evolution of chemical defenses in mimetic butterflies.
    Sculfort O; de Castro ECP; Kozak KM; Bak S; Elias M; Nay B; Llaurens V
    Ecol Evol; 2020 Mar; 10(5):2677-2694. PubMed ID: 32185010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arbuscular mycorrhizal fungi influence life history traits of a lepidopteran herbivore.
    Goverde M; van der Heijden M; Wiemken A; Sanders I; Erhardt A
    Oecologia; 2000 Nov; 125(3):362-369. PubMed ID: 28547331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil nutrient effects on oviposition preference, larval performance, and chemical defense of a specialist insect herbivore.
    Prudic KL; Oliver JC; Bowers MD
    Oecologia; 2005 May; 143(4):578-87. PubMed ID: 15909129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positive effects of cyanogenic glycosides in food plants on larval development of the common blue butterfly.
    Goverde M; Bazin A; Kéry M; Shykoff JA; Erhardt A
    Oecologia; 2008 Sep; 157(3):409-18. PubMed ID: 18600348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.