These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38343650)

  • 1. Dean vortex-enhanced blood plasma separation in self-driven spiral microchannel flow with cross-flow microfilters.
    Wang Y; Talukder N; Nunna BB; Lee ES
    Biomicrofluidics; 2024 Jan; 18(1):014104. PubMed ID: 38343650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous particle separation in spiral microchannels using Dean flows and differential migration.
    Bhagat AA; Kuntaegowdanahalli SS; Papautsky I
    Lab Chip; 2008 Nov; 8(11):1906-14. PubMed ID: 18941692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spiral microchannel with rectangular and trapezoidal cross-sections for size based particle separation.
    Guan G; Wu L; Bhagat AA; Li Z; Chen PC; Chao S; Ong CJ; Han J
    Sci Rep; 2013; 3():1475. PubMed ID: 23502529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of size-based particle separation throughput in slanted spiral microchannel by modifying outlet geometry.
    Mihandoust A; Maleki-Jirsaraei N; Rouhani S; Safi S; Alizadeh M
    Electrophoresis; 2020 Mar; 41(5-6):353-359. PubMed ID: 32012295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence factors of channel geometry for separation of circulating tumor cells by four-ring inertial focusing microchannel.
    Liu D; Chen S; Luo X
    Cell Biochem Funct; 2023 Apr; 41(3):375-388. PubMed ID: 36951265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood Plasma Self-Separation Technologies during the Self-Driven Flow in Microfluidic Platforms.
    Wang Y; Nunna BB; Talukder N; Etienne EE; Lee ES
    Bioengineering (Basel); 2021 Jul; 8(7):. PubMed ID: 34356201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous separation of blood cells in spiral microfluidic devices.
    Nivedita N; Papautsky I
    Biomicrofluidics; 2013; 7(5):54101. PubMed ID: 24404064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiplexing slanted spiral microchannels for ultra-fast blood plasma separation.
    Rafeie M; Zhang J; Asadnia M; Li W; Warkiani ME
    Lab Chip; 2016 Aug; 16(15):2791-802. PubMed ID: 27377196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spiral microchannel with ordered micro-obstacles for continuous and highly-efficient particle separation.
    Shen S; Tian C; Li T; Xu J; Chen SW; Tu Q; Yuan MS; Liu W; Wang J
    Lab Chip; 2017 Oct; 17(21):3578-3591. PubMed ID: 28975177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spiral Large-Dimension Microfluidic Channel for Flow-Rate- and Particle-Size-Insensitive Focusing by the Stabilization and Acceleration of Secondary Flow.
    Shen S; Zhao L; Bai H; Zhang Y; Niu Y; Tian C; Chan H
    Anal Chem; 2024 Jan; 96(4):1750-1758. PubMed ID: 38215439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma Isolation in a Syringe by Conformal Integration of Inertial Microfluidics.
    Han JY; DeVoe DL
    Ann Biomed Eng; 2021 Jan; 49(1):139-148. PubMed ID: 32367467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Throughput, Label-Free Isolation of White Blood Cells from Whole Blood Using Parallel Spiral Microchannels with U-Shaped Cross-Section.
    Mehran A; Rostami P; Saidi MS; Firoozabadi B; Kashaninejad N
    Biosensors (Basel); 2021 Oct; 11(11):. PubMed ID: 34821622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and experimental investigation of a novel spiral microfluidic chip to separate wide size range of micro-particles aimed at cell separation.
    Tabatabaei SA; Zabetian Targhi M
    Proc Inst Mech Eng H; 2021 Nov; 235(11):1315-1328. PubMed ID: 34218740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing particle focusing: a comparative experimental study of modified square wave and square wave microchannels in lift and Dean vortex regimes.
    Ashkani A; Jafari A; Ghomsheh MJ; Dumas N; Funfschilling D
    Sci Rep; 2024 Feb; 14(1):2679. PubMed ID: 38302543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Study of Multivortex Regulation in Curved Microchannels with Ultra-Low-Aspect-Ratio.
    Shen S; Gao M; Zhang F; Niu Y
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33466925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Triplet Parallelizing Spiral Microfluidic Chip for Continuous Separation of Tumor Cells.
    Chen H
    Sci Rep; 2018 Mar; 8(1):4042. PubMed ID: 29511230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of aspect ratio for complete separation in an inertial microfluidic channel.
    Zhou J; Giridhar PV; Kasper S; Papautsky I
    Lab Chip; 2013 May; 13(10):1919-29. PubMed ID: 23529341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device.
    VanDelinder V; Groisman A
    Anal Chem; 2006 Jun; 78(11):3765-71. PubMed ID: 16737235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices.
    Xiang N; Ni Z
    Biomed Microdevices; 2015 Dec; 17(6):110. PubMed ID: 26553099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.