These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38343955)

  • 1. Formation of Cell-Sized Liposomes Incorporating a β-Barrel-Structured Porin through Rehydration of a Phospholipid-Membrane Protein Dried Film.
    Tosaka T; Kamiya K
    ACS Omega; 2024 Feb; 9(5):5911-5918. PubMed ID: 38343955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of Giant Unilamellar Proteo-Liposomes by Osmotic Shock.
    Motta I; Gohlke A; Adrien V; Li F; Gardavot H; Rothman JE; Pincet F
    Langmuir; 2015 Jun; 31(25):7091-9. PubMed ID: 26038815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution of a transmembrane protein, the voltage-gated ion channel, KvAP, into giant unilamellar vesicles for microscopy and patch clamp studies.
    Garten M; Aimon S; Bassereau P; Toombes GE
    J Vis Exp; 2015 Jan; (95):52281. PubMed ID: 25650630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A membrane filtering method for the purification of giant unilamellar vesicles.
    Tamba Y; Terashima H; Yamazaki M
    Chem Phys Lipids; 2011 Jul; 164(5):351-8. PubMed ID: 21524642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution, lateral mobility and function of membrane proteins incorporated into giant unilamellar vesicles.
    Doeven MK; Folgering JH; Krasnikov V; Geertsma ER; van den Bogaart G; Poolman B
    Biophys J; 2005 Feb; 88(2):1134-42. PubMed ID: 15574707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detergent-mediated incorporation of transmembrane proteins in giant unilamellar vesicles with controlled physiological contents.
    Dezi M; Di Cicco A; Bassereau P; Lévy D
    Proc Natl Acad Sci U S A; 2013 Apr; 110(18):7276-81. PubMed ID: 23589883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SecYEG-mediated translocation in a model synthetic cell.
    Schoenmakers LLJ; den Uijl MJ; Postma JL; van den Akker TAP; Huck WTS; Driessen AJM
    Synth Biol (Oxf); 2024; 9(1):ysae007. PubMed ID: 38807757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial Peptide Lactoferricin B-Induced Rapid Leakage of Internal Contents from Single Giant Unilamellar Vesicles.
    Moniruzzaman M; Alam JM; Dohra H; Yamazaki M
    Biochemistry; 2015 Sep; 54(38):5802-14. PubMed ID: 26368853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Fluorescence-based Assay for Measuring Phospholipid Scramblase Activity in Giant Unilamellar Vesicles.
    Mathiassen PPM; Pomorski TG
    Bio Protoc; 2022 Mar; 12(6):e4366. PubMed ID: 35434199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroformation of giant unilamellar vesicles in saline solution.
    Li Q; Wang X; Ma S; Zhang Y; Han X
    Colloids Surf B Biointerfaces; 2016 Nov; 147():368-375. PubMed ID: 27566225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformation and poration of giant unilamellar vesicles induced by anionic nanoparticles.
    Karal MAS; Ahammed S; Levadny V; Belaya M; Ahamed MK; Ahmed M; Mahbub ZB; Ullah AKMA
    Chem Phys Lipids; 2020 Aug; 230():104916. PubMed ID: 32407734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial peptide magainin 2-induced rupture of single giant unilamellar vesicles comprising E. coli polar lipids.
    Billah MM; Or Rashid MM; Ahmed M; Yamazaki M
    Biochim Biophys Acta Biomembr; 2023 Mar; 1865(3):184112. PubMed ID: 36567034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single giant unilamellar vesicle method reveals effect of antimicrobial peptide magainin 2 on membrane permeability.
    Tamba Y; Yamazaki M
    Biochemistry; 2005 Dec; 44(48):15823-33. PubMed ID: 16313185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of Enzyme Reaction Initiation inside Giant Unilamellar Vesicles by the Cell-Penetrating Peptide-Mediated Translocation of Cargo Proteins.
    Miwa A; Kamiya K
    ACS Synth Biol; 2022 Nov; 11(11):3836-3846. PubMed ID: 36197293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid lateral organization on giant unilamellar vesicles containing lipopolysaccharides.
    Kubiak J; Brewer J; Hansen S; Bagatolli LA
    Biophys J; 2011 Feb; 100(4):978-86. PubMed ID: 21320442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of irreversible pore formation under constant electrical tension in giant unilamellar vesicles.
    Ahamed MK; Karal MAS; Ahmed M; Ahammed S
    Eur Biophys J; 2020 Jul; 49(5):371-381. PubMed ID: 32494845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroformation of Giant Unilamellar Vesicles from Damp Lipid Films with a Focus on Vesicles with High Cholesterol Content.
    Mardešić I; Boban Z; Raguz M
    Membranes (Basel); 2024 Mar; 14(4):. PubMed ID: 38668107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folding of a monomeric porin, OmpG, in detergent solution.
    Conlan S; Bayley H
    Biochemistry; 2003 Aug; 42(31):9453-65. PubMed ID: 12899633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of the Entry of Nonlabeled Transportan 10 into Single Vesicles.
    Shuma ML; Moghal MMR; Yamazaki M
    Biochemistry; 2020 May; 59(18):1780-1790. PubMed ID: 32285663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental platform for the functional investigation of membrane proteins in giant unilamellar vesicles.
    Dolder N; Müller P; von Ballmoos C
    Soft Matter; 2022 Aug; 18(31):5877-5893. PubMed ID: 35916307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.