These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38343961)

  • 1. Evaluation of the Effect of CaO on Hydrogen Production by Sorption-Enhanced Steam Methane Reforming.
    Luo Y; Chen J; Wang T
    ACS Omega; 2024 Feb; 9(5):5330-5337. PubMed ID: 38343961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated CO
    Papalas T; Antzaras AN; Lemonidou AA
    Energy Fuels; 2024 Jul; 38(13):11966-11979. PubMed ID: 38984063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Evaluation of Reactive Sorption Enhanced Biogas Steam Reforming Process for Hydrogen Production Using Nano-Sized CaO Adsorbents.
    Liu H; Yang Z; Wu S
    J Nanosci Nanotechnol; 2019 Jun; 19(6):3244-3251. PubMed ID: 30744750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic gasification of biomass (Miscanthus) enhanced by CO
    Zamboni I; Debal M; Matt M; Girods P; Kiennemann A; Rogaume Y; Courson C
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22253-22266. PubMed ID: 26996917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-purity hydrogen via the sorption-enhanced steam methane reforming reaction over a synthetic CaO-based sorbent and a Ni catalyst.
    Broda M; Manovic V; Imtiaz Q; Kierzkowska AM; Anthony EJ; Müller CR
    Environ Sci Technol; 2013 Jun; 47(11):6007-14. PubMed ID: 23675760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic modelling and optimization of oxy-reforming and oxy-steam reforming of biogas by RSM.
    Özcan MD; Özcan O; Akın AN
    Environ Technol; 2020 Jan; 41(1):14-28. PubMed ID: 31264942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steam reforming of crude glycerol with in situ CO(2) sorption.
    Dou B; Rickett GL; Dupont V; Williams PT; Chen H; Ding Y; Ghadiri M
    Bioresour Technol; 2010 Apr; 101(7):2436-42. PubMed ID: 19945865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single Step Bi-reforming and Oxidative Bi-reforming of Methane (Natural Gas) with Steam and Carbon Dioxide to Metgas (CO-2H2) for Methanol Synthesis: Self-Sufficient Effective and Exclusive Oxygenation of Methane to Methanol with Oxygen.
    Olah GA; Goeppert A; Czaun M; Mathew T; May RB; Prakash GK
    J Am Chem Soc; 2015 Jul; 137(27):8720-9. PubMed ID: 26086090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approaching sustainable H2 production: sorption enhanced steam reforming of ethanol.
    He L; Berntsen H; Chen D
    J Phys Chem A; 2010 Mar; 114(11):3834-44. PubMed ID: 19831373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen Production by Sorption Enhanced Steam Reforming (SESR) of Biomass in a Fluidised-Bed Reactor Using Combined Multifunctional Particles.
    Clough PT; Boot-Handford ME; Zheng L; Zhang Z; Fennell PS
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29883427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy Analysis and Heat Integration in the Joint Process of Biomass Fast Pyrolysis and In Line Sorption Enhanced Steam Reforming.
    Comendador P; Santamaria L; Amutio M; Alvarez J; Olazar M; Lopez G
    Energy Fuels; 2024 Aug; 38(15):14402-14413. PubMed ID: 39108833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen production from glucose and sorbitol by sorption-enhanced steam reforming: challenges and promises.
    He L; Chen D
    ChemSusChem; 2012 Mar; 5(3):587-95. PubMed ID: 22378630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifunctional Pd/Ni-Co catalyst for hydrogen production by chemical looping coupled with steam reforming of acetic acid.
    Fermoso J; Gil MV; Rubiera F; Chen D
    ChemSusChem; 2014 Nov; 7(11):3063-77. PubMed ID: 25209388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilization of acetone-butanol-ethanol-water mixture obtained from biomass fermentation as renewable feedstock for hydrogen production via steam reforming: Thermodynamic and energy analyses.
    Kumar B; Kumar S; Sinha S; Kumar S
    Bioresour Technol; 2018 Aug; 261():385-393. PubMed ID: 29684868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High purity H2 by sorption-enhanced chemical looping reforming of waste cooking oil in a packed bed reactor.
    Pimenidou P; Rickett G; Dupont V; Twigg MV
    Bioresour Technol; 2010 Dec; 101(23):9279-86. PubMed ID: 20655199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The grain growth mechanism of nano-CaO regenerated by nano-CaCO
    Liu H; Pan F; Wu S
    RSC Adv; 2019 Aug; 9(46):26949-26955. PubMed ID: 35528570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of hydrogen-rich gas from methane by thermal plasma reform.
    Chun YN; Kim SC
    J Air Waste Manag Assoc; 2007 Dec; 57(12):1447-51. PubMed ID: 18200929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of support on the performance of PtRu-based catalysts in oxidative steam reforming of ethanol to produce hydrogen.
    Tang CW; Liu CH; Yu SW; Wang CB
    Front Chem; 2022; 10():1079214. PubMed ID: 36601553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ceramic microreactors for on-site hydrogen production from high temperature steam reforming of propane.
    Christian MM; Kenis PJ
    Lab Chip; 2006 Oct; 6(10):1328-37. PubMed ID: 17111577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Torrefaction/carbonization-enhanced gasification-steam reforming of biomass for promoting hydrogen-enriched syngas production and tar elimination over gasification biochars.
    Kong G; Wang K; Zhang X; Li J; Han L; Zhang X
    Bioresour Technol; 2022 Nov; 363():127960. PubMed ID: 36113820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.