These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38343964)

  • 1. A Coupled Model for Upscaling Water Flow in a Shale Matrix System from Pore Scale to Representative Elementary Area Scale.
    Yang Y; Long W; Yang J; Liu T
    ACS Omega; 2024 Feb; 9(5):5215-5223. PubMed ID: 38343964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigations of Water Transport in Shale Reservoir with Dual-Wettability by Using Monte Carlo Method.
    Liang T; Fan W; Yu B; Yang C; Qu M
    ACS Omega; 2023 Dec; 8(50):48280-48291. PubMed ID: 38144089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fractal characteristics of shale pore structure and its influence on seepage flow.
    Wang S; Li X; Xue H; Shen Z; Chen L
    R Soc Open Sci; 2021 May; 8(5):202271. PubMed ID: 34017601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix.
    Zhang P; Hu L; Meegoda JN
    Materials (Basel); 2017 Jan; 10(2):. PubMed ID: 28772465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale modeling of gas flow behaviors in nanoporous shale matrix considering multiple transport mechanisms.
    Zhou W; Yang X; Liu X
    Phys Rev E; 2022 May; 105(5-2):055308. PubMed ID: 35706209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the Influence of Shale Storage Space Types on Shale Gas Transport.
    Gao Q; Dong P; Liu C
    ACS Omega; 2021 May; 6(20):12931-12951. PubMed ID: 34056445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport Behavior of Oil in Mixed Wettability Shale Nanopores.
    Zhao G; Yao Y; Adenutsi CD; Feng X; Wang L; Wu W
    ACS Omega; 2020 Dec; 5(49):31831-31844. PubMed ID: 33344837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractal Characteristics of the Middle-Upper Ordovician Marine Shale Nano-Scale Porous Structure from the Ordos Basin, Northeast China.
    Liu L; Mo W; Wang M; Zhou N; Yan Y; Xu L; Li M; Zhang J; Lu S
    J Nanosci Nanotechnol; 2021 Jan; 21(1):274-283. PubMed ID: 33213629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Apparent Permeability Model in Organic Shales: Coupling Multiple Flow Mechanisms and Factors.
    Song H; Li B; Li J; Ye P; Duan S; Ding Y
    Langmuir; 2023 Mar; 39(11):3951-3966. PubMed ID: 36877867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation in Pore Structure and Associated Fractal Dimensions of Barakar and Barren Measures Carbon-Rich Gas Shales of Jharia Basin, India.
    Khangar RG; Mendhe VA; Kamble AD; Ranjan Das P; Shukla P; Bannerjee M; Varma AK
    ACS Omega; 2021 Nov; 6(43):28678-28698. PubMed ID: 34746563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanopore Structure and Fractal Characteristics of Lacustrine Shale: Implications for Shale Gas Storage and Production Potential.
    Chen L; Jiang Z; Jiang S; Liu K; Yang W; Tan J; Gao F
    Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30866444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiparameter Analysis of Gas Transport Phenomena in Shale Gas Reservoirs: Apparent Permeability Characterization.
    Shen Y; Pang Y; Shen Z; Tian Y; Ge H
    Sci Rep; 2018 Feb; 8(1):2601. PubMed ID: 29422663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and verification of a glass-silicon-glass micro-/nanofluidic model for investigating multi-phase flow in shale-like unconventional dual-porosity tight porous media.
    Zhang Y; Zhou C; Qu C; Wei M; He X; Bai B
    Lab Chip; 2019 Dec; 19(24):4071-4082. PubMed ID: 31702750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale pore structure and fractal characteristics of lacustrine shale: A case study of the Upper Cretaceous Qingshankou shales, Southern Songliao Basin, China.
    Ji C; Liu T; Chen Y; Wang Q; Sun P; Sun L; He T
    PLoS One; 2024; 19(10):e0309346. PubMed ID: 39423183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhomogeneous Fluid Transport Modeling in Dual-Scale Porous Media Considering Fluid-Solid Interactions.
    Ma M; Emami-Meybodi H
    Langmuir; 2024 Aug; ():. PubMed ID: 39148474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pore Structure and Fractal Dimension in Marine Mature Silicon-Rich Shale of the Dalong Formation in Western Hubei.
    Liu W; Zhu Q; Qiao Y; Pan J; Wu W; Chen L
    ACS Omega; 2024 Mar; 9(10):11718-11729. PubMed ID: 38496967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A core-scale reconstructing method for shale.
    Ji L; Lin M; Cao G; Jiang W
    Sci Rep; 2019 Mar; 9(1):4364. PubMed ID: 30867439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence and Flow Behavior for Oil Transport in Mixed Wetting Nanoscale Shale Bedding Fractures.
    Wang Y; Lei Z; Xu Z; Liu Y; Zhou Q; Liu P
    Langmuir; 2024 Jul; 40(28):14399-14412. PubMed ID: 38960902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Temperature-Induced Pore System Evolution of Immature Shale with Different Total Organic Carbon Contents.
    Zhuoke L; Lin T; Liu X; Ma S; Li X; Yang F; He B; Liu J; Zhang Y; Xie L
    ACS Omega; 2023 Apr; 8(14):12773-12786. PubMed ID: 37065028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of de-ionized water on changes in porosity and permeability of shales mineralogy due to clay-swelling.
    Zhang D; Meegoda JN; da Silva BMG; Hu L
    Sci Rep; 2021 Oct; 11(1):20049. PubMed ID: 34625625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.