These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 38344299)

  • 21. A Review of 3-Dimensional Skin Bioprinting Techniques: Applications, Approaches, and Trends.
    Ishack S; Lipner SR
    Dermatol Surg; 2020 Dec; 46(12):1500-1505. PubMed ID: 32205755
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Biofabrication: new approaches for tissue regeneration].
    Horch RE; Weigand A; Wajant H; Groll J; Boccaccini AR; Arkudas A
    Handchir Mikrochir Plast Chir; 2018 Apr; 50(2):93-100. PubMed ID: 29378379
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-Dimensional Bioprinting Strategies for Tissue Engineering.
    Zhang YS; Oklu R; Dokmeci MR; Khademhosseini A
    Cold Spring Harb Perspect Med; 2018 Feb; 8(2):. PubMed ID: 28289247
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biofabrication of small diameter tissue-engineered vascular grafts.
    Weekes A; Bartnikowski N; Pinto N; Jenkins J; Meinert C; Klein TJ
    Acta Biomater; 2022 Jan; 138():92-111. PubMed ID: 34781026
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoscale 3D Bioprinting for Osseous Tissue Manufacturing.
    Wang Y; Gao M; Wang D; Sun L; Webster TJ
    Int J Nanomedicine; 2020; 15():215-226. PubMed ID: 32021175
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Applications of 3D bioprinting in tissue engineering: advantages, deficiencies, improvements, and future perspectives.
    Tan B; Gan S; Wang X; Liu W; Li X
    J Mater Chem B; 2021 Jul; 9(27):5385-5413. PubMed ID: 34124724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three dimensional printed biofilms: Fabrication, design and future biomedical and environmental applications.
    Lazarus E; Meyer AS; Ikuma K; Rivero IV
    Microb Biotechnol; 2024 Jan; 17(1):e14360. PubMed ID: 38041693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three dimensional printing: A review on the utility within medicine and otolaryngology.
    Kaye R; Goldstein T; Zeltsman D; Grande DA; Smith LP
    Int J Pediatr Otorhinolaryngol; 2016 Oct; 89():145-8. PubMed ID: 27619046
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Digital light processing-based multi-material bioprinting: Processes, applications, and perspectives.
    Wu Y; Su H; Li M; Xing H
    J Biomed Mater Res A; 2023 Apr; 111(4):527-542. PubMed ID: 36436142
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D Bioprinting for Vascularized Tissue Fabrication.
    Richards D; Jia J; Yost M; Markwald R; Mei Y
    Ann Biomed Eng; 2017 Jan; 45(1):132-147. PubMed ID: 27230253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional printing: The potential technology widely used in medical fields.
    Li H; Fan W; Zhu X
    J Biomed Mater Res A; 2020 Nov; 108(11):2217-2229. PubMed ID: 32363725
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D printing for clinical application in otorhinolaryngology.
    Zhong N; Zhao X
    Eur Arch Otorhinolaryngol; 2017 Dec; 274(12):4079-4089. PubMed ID: 28929219
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of culture conditions on the bone regeneration potential of osteoblast-laden 3D bioprinted constructs.
    Raveendran N; Ivanovski S; Vaquette C
    Acta Biomater; 2023 Jan; 156():190-201. PubMed ID: 36155098
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tissue Engineering Applications of Three-Dimensional Bioprinting.
    Zhang X; Zhang Y
    Cell Biochem Biophys; 2015 Jul; 72(3):777-82. PubMed ID: 25663505
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs.
    Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K
    Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioprinting for vascular and vascularized tissue biofabrication.
    Datta P; Ayan B; Ozbolat IT
    Acta Biomater; 2017 Mar; 51():1-20. PubMed ID: 28087487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Volumetric Printing Across Melt Electrowritten Scaffolds Fabricates Multi-Material Living Constructs with Tunable Architecture and Mechanics.
    Größbacher G; Bartolf-Kopp M; Gergely C; Bernal PN; Florczak S; de Ruijter M; Rodriguez NG; Groll J; Malda J; Jungst T; Levato R
    Adv Mater; 2023 Aug; 35(32):e2300756. PubMed ID: 37099802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D Printing for the Fabrication of Biofilm-Based Functional Living Materials.
    Balasubramanian S; Aubin-Tam ME; Meyer AS
    ACS Synth Biol; 2019 Jul; 8(7):1564-1567. PubMed ID: 31319670
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Future prospects in 3-dimensional (3D) technology and Mohs micrographic surgery.
    Ishack S; Khachemoune A
    J Dermatolog Treat; 2022 Sep; 33(6):2810-2812. PubMed ID: 35588254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.