These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 3834431)

  • 1. Response of rat hindlimb muscles to 12 hours recovery from tail-cast suspension.
    Tischler ME; Henriksen EJ; Jacob S; Cook P; Jaspers S
    Physiologist; 1985 Dec; 28(6 Suppl):S129-30. PubMed ID: 3834431
    [No Abstract]   [Full Text] [Related]  

  • 2. Responses of amino acids in hindlimb muscles to recovery from hypogravity and unloading by tail-cast suspension.
    Tischler ME; Henriksen EJ; Jacob S; Cook PH
    Physiologist; 1985 Dec; 28(6 Suppl):S191-2. PubMed ID: 2871570
    [No Abstract]   [Full Text] [Related]  

  • 3. Myogenin, MyoD, and myosin heavy chain isoform expression following hindlimb suspension.
    Mozdziak PE; Greaser ML; Schultz E
    Aviat Space Environ Med; 1999 May; 70(5):511-6. PubMed ID: 10332949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observations on arteriolar network structure in soleus of tail-suspended rats.
    Mao QW; Zhang LF; Ma J
    J Gravit Physiol; 1997 Jul; 4(2):P129-30. PubMed ID: 11540675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Skeletal musculature of rats during modeling of the physiological effects of weightlessness (morphological study)].
    Il'ina-Kakueva EI; Novikov VE
    Kosm Biol Aviakosm Med; 1985; 19(3):56-60. PubMed ID: 4033047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle protein and glycogen responses to recovery from hypogravity and unloading by tail-cast suspension.
    Henriksen EJ; Tischler ME; Jacob S; Cook PH
    Physiologist; 1985 Dec; 28(6 Suppl):S193-4. PubMed ID: 3834461
    [No Abstract]   [Full Text] [Related]  

  • 7. [Effect of a Chinese herbal prescription on femur calcium deposition in rats under simulated weightlessness: by using (41)Ca tracing-accelerator mass spectrometry analysis].
    Hu S; Zhou P; Jiang S; He M; Fu Q; Yang J; Gao X
    Zhongguo Zhong Yao Za Zhi; 2009 May; 34(9):1129-32. PubMed ID: 19685751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weightlessness simulations for cardiovascular and muscle systems: validity of rat models.
    Musacchia XJ; Fagette S
    J Gravit Physiol; 1997 Oct; 4(3):49-59. PubMed ID: 11541869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early central venous pressure changes in the rat during two different levels of head-down suspension.
    Shellock FG; Swan HJ; Rubin SA
    Aviat Space Environ Med; 1985 Aug; 56(8):791-5. PubMed ID: 4038235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Problem of modeling the physiologic effects of weightlessness by the method of "antiorthostatic suspension" of small laboratory animals].
    Kuznetsov SL; Talis VL
    Kosm Biol Aviakosm Med; 1989; 23(1):74-6. PubMed ID: 2523500
    [No Abstract]   [Full Text] [Related]  

  • 11. Gene expression levels of heat shock proteins in the soleus and plantaris muscles of rats after hindlimb suspension or spaceflight.
    Ishihara A; Fujino H; Nagatomo F; Takeda I; Ohira Y
    J Physiol Sci; 2008 Dec; 58(6):413-7. PubMed ID: 18845059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in skeletal muscle properties following hindlimb suspension.
    Patterson GT; Dettbarn WD
    Physiologist; 1985 Dec; 28(6 Suppl):S133-4. PubMed ID: 3834433
    [No Abstract]   [Full Text] [Related]  

  • 13. Physiological properties of rat hind limb muscles after 15 days of simulated weightless environment.
    Jain PK; Banerjee PK; Baboo NS; Iyer EM
    Indian J Physiol Pharmacol; 1997 Jan; 41(1):23-8. PubMed ID: 10225028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in muscles accompanying non-weight-bearing and weightlessness.
    Tischler ME; Henriksen EJ; Jaspers SR; Jacob S; Kirby C
    Adv Myochem; 1989; 2():325-38. PubMed ID: 11540913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of long-term hindlimb suspension on blood components.
    Nakaya M; Kosugi K; Takeuchi S
    Physiologist; 1991 Feb; 34(1 Suppl):S92-3. PubMed ID: 2047481
    [No Abstract]   [Full Text] [Related]  

  • 16. Functional alterations in cardiac muscle after medium- or long-term simulated weightlessness and related cellular mechanisms.
    Zhang LF; Yu ZB; Ma J
    J Gravit Physiol; 1995; 2(1):P5-8. PubMed ID: 11538929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of hindlimb suspension training on the central and regional hemodynamic responses during 24 hours antiorthostatic hypokinesia in the awake rat.
    Bytchkova EY; Medvedev OS; Matsievsky DD; Krotov VP
    J Gravit Physiol; 1994 May; 1(1):P137-8. PubMed ID: 11538743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional and cellular adaptation to weightlessness in primates.
    Bodine-Fowler SC; Pierotti DJ; Talmadge RJ
    J Gravit Physiol; 1995; 2(1):P43-6. PubMed ID: 11538927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Alterations of arterial vasoconstrictor responsiveness in rats during and after tail-suspension].
    Ma J; Zhang LF; Yang TD; Zhang LN
    Space Med Med Eng (Beijing); 1999 Jun; 12(3):169-72. PubMed ID: 11766708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hindlimb unloading in adult rats using an alternative tail harness design.
    Knox M; Fluckey JD; Bennett P; Peterson CA; Dupont-Versteegden EE
    Aviat Space Environ Med; 2004 Aug; 75(8):692-6. PubMed ID: 15328787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.