These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38344384)

  • 1. Normal Incidence Excitation of Out-of-Plane Lattice Resonances in Bipartite Arrays of Metallic Nanostructures.
    Alvarez-Serrano JJ; Deop-Ruano JR; Aglieri V; Toma A; Manjavacas A
    ACS Photonics; 2024 Jan; 11(1):301-309. PubMed ID: 38344384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Super- and Subradiant Lattice Resonances in Bipartite Nanoparticle Arrays.
    Cuartero-González A; Sanders S; Zundel L; Fernández-Domínguez AI; Manjavacas A
    ACS Nano; 2020 Sep; 14(9):11876-11887. PubMed ID: 32794729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chiral Lattice Resonances in 2.5-Dimensional Periodic Arrays with Achiral Unit Cells.
    Cerdán L; Zundel L; Manjavacas A
    ACS Photonics; 2023 Jun; 10(6):1925-1935. PubMed ID: 37363634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the Limits of the Near-Field Produced by Nanoparticle Arrays.
    Manjavacas A; Zundel L; Sanders S
    ACS Nano; 2019 Sep; 13(9):10682-10693. PubMed ID: 31487460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Q out-of-plane Mie electric dipole surface lattice resonances in silicon metasurfaces.
    Zhao X; Xiong L; Zhang Z; Li G
    Opt Express; 2022 Sep; 30(19):34601-34611. PubMed ID: 36242469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lattice Resonances Excited by Finite-Width Light Beams.
    Zundel L; Deop-Ruano JR; Martinez-Herrero R; Manjavacas A
    ACS Omega; 2022 Sep; 7(35):31431-31441. PubMed ID: 36092601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dipole-lattice nanoparticle resonances in finite arrays.
    Karimi V; Babicheva VE
    Opt Express; 2023 May; 31(10):16857-16871. PubMed ID: 37157755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing localized surface plasmon resonances using focused radially polarized beam.
    Shang W; Xiao F; Zhu W; Han L; Mei T; Zhao J
    Appl Opt; 2019 Jul; 58(21):5812-5816. PubMed ID: 31503889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Symmetry-breaking induced magnetic Fano resonances in densely packed arrays of symmetric nanotrimers.
    Wang N; Zeisberger M; Huebner U; Giannini V; Schmidt MA
    Sci Rep; 2019 Feb; 9(1):2873. PubMed ID: 30814665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-strong polarization dependence of surface lattice resonances with out-of-plane plasmon oscillations.
    Huttunen MJ; Dolgaleva K; Törmä P; Boyd RW
    Opt Express; 2016 Dec; 24(25):28279-28289. PubMed ID: 27958539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral Surface Lattice Resonances.
    Goerlitzer ESA; Mohammadi R; Nechayev S; Volk K; Rey M; Banzer P; Karg M; Vogel N
    Adv Mater; 2020 Jun; 32(22):e2001330. PubMed ID: 32319171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Lattice Resonances in Self-Assembled Arrays of Monodisperse Ag Cuboctahedra.
    Juodėnas M; Tamulevičius T; Henzie J; Erts D; Tamulevičius S
    ACS Nano; 2019 Aug; 13(8):9038-9047. PubMed ID: 31329417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice Mie resonances and emissivity enhancement in mid-infrared iron pyrite metasurfaces.
    Islam MS; Babicheva VE
    Opt Express; 2023 Nov; 31(24):40380-40392. PubMed ID: 38041341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas.
    Giannini V; Vecchi G; Rivas JG
    Phys Rev Lett; 2010 Dec; 105(26):266801. PubMed ID: 21231697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybridization of Lattice Resonances.
    Baur S; Sanders S; Manjavacas A
    ACS Nano; 2018 Feb; 12(2):1618-1629. PubMed ID: 29301081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-Plane Surface Lattice and Higher Order Resonances in Self-Assembled Plasmonic Monolayers: From Substrate-Supported to Free-Standing Thin Films.
    Volk K; Fitzgerald JPS; Karg M
    ACS Appl Mater Interfaces; 2019 May; 11(17):16096-16106. PubMed ID: 30945839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications.
    Danilov A; Tselikov G; Wu F; Kravets VG; Ozerov I; Bedu F; Grigorenko AN; Kabashin AV
    Biosens Bioelectron; 2018 May; 104():102-112. PubMed ID: 29331424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybridization in Three Dimensions: A Novel Route toward Plasmonic Metamolecules.
    Zilio P; Malerba M; Toma A; Zaccaria RP; Jacassi A; De Angelis F
    Nano Lett; 2015 Aug; 15(8):5200-7. PubMed ID: 26214122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays.
    Kataja M; Hakala TK; Julku A; Huttunen MJ; van Dijken S; Törmä P
    Nat Commun; 2015 May; 6():7072. PubMed ID: 25947368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.