These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 3834502)

  • 1. Response of amphibian egg non-yolk cytoplasm to gravity orientation.
    Smith RC; Neff AW; Malacinski GM
    Physiologist; 1985 Dec; 28(6 Suppl):S91-2. PubMed ID: 3834502
    [No Abstract]   [Full Text] [Related]  

  • 2. Amphibian egg cytoplasm response to altered g-forces and gravity orientation.
    Neff AW; Smith RC; Malacinski GM
    Adv Space Res; 1986; 6(12):21-8. PubMed ID: 11537823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The amphibian egg as a model system for analyzing gravity effects.
    Malacinski GM; Neff AW
    Adv Space Res; 1989; 9(11):169-76. PubMed ID: 11537330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organisation of Xenopus egg cytoplasm: response to simulated microgravity.
    Smith RC; Neff AW
    J Exp Zool; 1986 Sep; 239(3):365-78. PubMed ID: 3760807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bifurcation of the amphibian embryo's axis: analysis of variation in response to egg centrifugation.
    Neff AW; Wakahara M; Malacinski GM
    Int J Dev Biol; 1990 Dec; 34(4):391-8. PubMed ID: 2288862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep cytoplasmic rearrangements in axis-respecified Xenopus embryos.
    Denegre JM; Danilchik MV
    Dev Biol; 1993 Nov; 160(1):157-64. PubMed ID: 8224533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A reinvestigation of the role of the grey crescent in axis formation in xenopus laevis.
    Gerhart J; Ubbels G; Black S; Hara K; Kirschner M
    Nature; 1981 Aug; 292(5823):511-6. PubMed ID: 7195987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcellular components of the amphibian egg: insights provided by gravitational studies.
    Neff AW; Ritzenthaler JD; Rosenbaum JF
    Adv Space Res; 1989; 9(11):177-86. PubMed ID: 11537331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental analyses of cytoplasmic rearrangements which follow fertilization and accompany symmetrization of inverted Xenopus eggs.
    Neff AW; Wakahara M; Jurand A; Malacinski GM
    J Embryol Exp Morphol; 1984 Apr; 80():197-224. PubMed ID: 6540289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental control of the site of embryonic axis formation in Xenopus laevis eggs centrifuged before first cleavage.
    Black SD; Gerhart JC
    Dev Biol; 1985 Apr; 108(2):310-24. PubMed ID: 4076537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of clinostat rotation on fertilized amphibian egg pattern specification.
    Neff AW; Smith RC; Chung HM; Malacinski GM
    Physiologist; 1984; 27(6 Suppl):S139-40. PubMed ID: 11539005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microgravity simulation as a probe for understanding early Xenopus pattern specification.
    Neff AW; Malacinski GM; Chung HM
    J Embryol Exp Morphol; 1985 Oct; 89():259-74. PubMed ID: 4093749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation, organization and deployment of oogenetically derived Xenopus yolk/nonyolk proteins.
    Smith RC; Neff AW; Malacinski GM
    J Embryol Exp Morphol; 1986 Oct; 97 Suppl():45-64. PubMed ID: 3305761
    [No Abstract]   [Full Text] [Related]  

  • 14. Regulation of cell cycle by cytoplasmic components in the amphibian eggs.
    Aimar C; Vilain C; Delarue M
    Cell Differ; 1983 Dec; 13(4):293-300. PubMed ID: 6687048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early amphibian (anuran) morphogenesis is sensitive to novel gravitational fields.
    Neff AW; Yokota H; Chung HM; Wakahara M; Malacinski GM
    Dev Biol; 1993 Jan; 155(1):270-4. PubMed ID: 8416840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Permanent distortion of positional system of Xenopus embryo by brief early perturbation in gravity.
    Cooke J
    Nature; 1986 Jan 2-8; 319(6048):60-3. PubMed ID: 3941738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Ultrastructure and ultrastructural cytochemistry of the germinal vesicle and the perinuclear cytoplasm of the ripe oocyte of Xenopus laevis].
    Van Gansen P; Schram A
    J Embryol Exp Morphol; 1968 Nov; 20(3):375-89. PubMed ID: 5728204
    [No Abstract]   [Full Text] [Related]  

  • 18. Cytokeratin intermediate filament organisation and dynamics in the vegetal cortex of living Xenopus laevis oocytes and eggs.
    Clarke EJ; Allan VJ
    Cell Motil Cytoskeleton; 2003 Sep; 56(1):13-26. PubMed ID: 12905528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The effect of fertilization on the ultrastructure of the peripheal cytoplasm of the egg of Xenopus laevis].
    Van Gansen P
    J Embryol Exp Morphol; 1966 Jun; 15(3):365-9. PubMed ID: 6007186
    [No Abstract]   [Full Text] [Related]  

  • 20. A sperm chemoattractant is released from Xenopus egg jelly during spawning.
    al-Anzi B; Chandler DE
    Dev Biol; 1998 Jun; 198(2):366-75. PubMed ID: 9659939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.